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ABSTRACT 

TWO-DIMENSIONAL NANOMATERIALS AND THEIR COMPOSITES FOR 

ELECTROCHEMICAL DETECTION OF TOXIC MERCURY IONS IN WATER 

MD TAWABUR RAHMAN 

2020 

The presence of trace amounts of mercury ion (Hg2+) in drinking water has a 

detrimental effect on human health. The development of an electrochemical sensor for Hg2+ 

detection is still challenging to obtain ultra-trace sensitivity, excellent selectivity, wide 

Linear Detection Ranges (LDRs), and ultra-low detection limit. This work presents an 

electrochemical sensor based on two-dimensional nanomaterials and their composites for 

the enhanced sensing of Hg2+ in water. Graphene oxide (GO)-silver nanowires (AgNWs) 

composite and metallic 1T phase tungsten disulfide (WS2) microflowers were utilized for 

the fabrication of electrochemical sensors using drop-casting. Under the optimized 

experimental conditions, the GO-AgNWs composite modified sensor showed a high 

sensitivity of ~ 0.29 µA/nM and linear response in the range of 1-70 nM toward Hg2+, 

whereas 1T-WS2 microflowers modified sensor showed excellent sensitivities of ~ 15.9 

µA/µM, 2.54 µA/µM, 13.84 µA/µM, and 0.04646 µA/µM toward Hg2+ with  LDRs of 1-

90 nM, 0.1-0.4 µM, 0.5-1.0 µM, and 0.1-1.0 mM, respectively. An ultra-low detection limit 

of 0.1 nM and 0.0798 nM or 79.8 pM toward Hg2+ was obtained by GO-AgNWs composite 

and 1T-WS2 modified sensors, which are well below the guideline value recommended by 

the World Health Organization and the United States Environmental Protection Agency. 

The sensors exhibited excellent selectivity for Hg2+ against other heavy metal ions 

including Cu2+, Fe3+, Ni2+, Pb2+, Cr3+, K+, Na+, Ag+, Sn2+, and Cd2+. The thus obtained 
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excellent sensitivity and selectivity with wide LDRs and ultra-low detection limits can be 

attributed to the synergistic effect of GO and conductive AgNWs, high conductivity, large 

surface area microflower structured 1T-WS2, and the complexation of Hg2+ ions with sulfur 

(S2-) and GO. In addition to good repeatability, reproducibility, and stability, these sensors 

showed practical feasibility of Hg2+ detection in tap water suggesting a promising device 

for real applications. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

1.1.1 Heavy Metals, Sources, and Effects 

Heavy metals are all around such as in the air, water, food, etc. To date, there is no 

globally accepted definition for heavy metals. However, the toxic elements that have a 

density of more than 5 g cm−3 and atomic weights between 63.5 and 200.6 g mol-1 are 

known as heavy metals [1-3]. A trace amount of heavy metals has detrimental effects on 

human health and other living organisms due to their adverse toxicity and non-

biodegradability [4, 5]. Table 1.1 summarizes different heavy metals with their sources 

effects, and permissible limits recommended by the World Health Organization (WHO) 

and the Environmental Protection Agency (EPA). 

Mercury is a widely known toxic and non-biodegradable metal and a threat to 

public health and the environment [6, 7]. There are three forms of metal Hg in the 

environment such as elemental, inorganic, and organic compounds. The accumulation of 

inorganic mercury into the human body through the food chain can cause several serious 

diseases including arrhythmia, erethism, cardiomyopathy, nephrotic syndrome, pulmonary 

edema [8, 9]. It can also cause fatal diseases including kidney and respiratory defects, 

Minamata disease, acrodynia, hypotonia, hypertension, irregular digestion with damaging 

the nervous and gastrointestinal system, and immune system. There are many regulations 

to stop excess exposure to mercury. However, mercury is still originated by natural,  
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Table 1.1 Sources, effects, and permissible limits of a variety of heavy metals in 

drinking water [1, 10-16]. 

Heavy 

metals 

Sources Effects 

Permissible 

limits (mg/L) 

WHO EPA 

Mercury 

(Hg) 

Pesticides, energy storage, 

paper manufacturing, coal 

combustion, power plants, 

and volcanic emissions 

arrhythmia, 

cardiomyopathy, kidney 

and respiratory failure, 

pulmonary edema, 

nephrotic syndrome, 

nervous and 

gastrointestinal system 

defects, damaged 

immune system 

0.001 0.002 

Lead (Pb) Tobacco, emission from 

vehicle, PVC pipes in 

sanitation, pesticide, paints, 

jewelry, mining, lead 

batteries, lunch boxes, 

burning of coal  

Central nervous defects 

particularly for kids, 

encephalopathy for 

infants, kidney failure, 

gastrointestinal 

disorders, Alzheimer’s 

disease 

0.05 0.01 
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Heavy 

metals 

Sources Effects 

Permissible 

limits (mg/L) 

WHO EPA 

Cadmium 

(Cd) 

Fertilizers, pesticides, 

paints and lubricants, 

electroplating for 

ornaments, cadmium and 

nickel batteries, solar cells, 

nuclear power plants 

kidney dysfunction, 

hypertension, fatigue, 

lung cancer, acute 

bronchitis, fatal 

pulmonary fibrosis,  

0.005 0.005 

Arsenic 

(Ar) 

Fertilizers, agricultural 

pesticides, Wooden poles, 

fungicides, mining, 

geological systems 

 

central nervous system 

defects, 

hyperpigmentation, skin 

cancer, gastrointestinal 

diseases, pulmonary 

diseases 

0.05 0.01 

Copper 

(Cu) 

Solar cells, pesticides, 

fertilizers, tannery waste, 

chemical waste 

 

 

Arthritis, skin allergies, 

kidney and liver 

dysfunction, lungs and 

digestive defects, 

fatigue, liver and kidney 

damage, diabetes 

1.3 1.3 
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Heavy 

metals 

Sources Effects 

Permissible 

limits (mg/L) 

WHO EPA 

Silver (Ag) Electroplating parts, 

refinery industries, jewelry 

refining 

Alzheimer’s disease, 

fatigue, rheumatoid 

arthritis, cytopathologic 

effects, local argyria 

0.1 0.1 

Chromium 

(Cr) 

Mining, dying industry, 

leathers, electroplating, 

minerals 

 

Lung cancer, dermatitis, 

dysfunction of the 

nervous system, mental 

fatigues, irritation, skin 

ulcers 

0.05 0.1 

Zinc (Zn) Chemical refineries, 

electroplating, welding, 

electric soldering, brass 

industry, pigments  

Bronchitis, respiratory 

failure, skin diseases, 

prostate cancer, nervous 

disorders 

5 5 

domestic, and industrial sources such as pesticides, energy storage, mining, coal 

combustion, power plants, thermometers, cosmetics, volcanic emissions, etc. 

Consequently, the water and air of the environment have been contaminated with mercury 

which in turn enters our body through drinking water, fishes, vegetables, fruits, etc. The 
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WHO and the EPA have defined guideline values of mercury in drinking water as 0.001 

mg/L (5 nanomolar, nM) and 0.002 mg/L (10 nM), respectively [17]. 

Lead is another important heavy metal contaminant that has adverse effects on 

human health and environment species. The leaching of lead from PVC pipes can 

significantly contaminate drinking water and tap water. Another major source of lead is 

lead soldered and chrome-plated domestic fixtures which are mixed with water due to 

corrosion. The exposure of trace levels of lead can cause fatal disorders in the human brain,  

immune systems, neural systems particularly for kids and youths [18-20]. The WHO and 

EPA recommended the value of lead in drinking water is 0.05 mg/L and 0.01 mg/L, 

respectively [10].  

Cadmium is another heavy metal element and causes a sudden loss of kidney 

function, hypertension, fatigue, lung cancer, bone marrow cancer, acute bronchitis, 

gastrointestinal diseases, fatal pulmonary fibrosis, osteoporosis, etc. Major sources of 

cadmium pollution are fertilizers and pesticides in agriculture, paints, lubricants, 

photography, electrical welding, electroplating for ornaments, batteries, solar cells, nuclear 

power plants, etc. A 0.005 mg/L of cadmium in drinking water is allowed [11]. The 

contamination of arsenic in drinking water has negative effects on the human body such as 

the central nervous system, hyperpigmentation, skin cancer, gastrointestinal diseases, 

pulmonary diseases, dermatologic effects, brain edema, lung edema, atopic dermatitis, etc. 

A maximum concentration of 0.05 mg/L and 0.01 mg/L is allowed for arsenic contaminants 

in drinking water [12]. 
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Major sources of copper are solar cells, pesticides, fertilizers, tannery waste, 

chemical waste, metal pipes, etc. The uptake of toxic copper can cause arthritis, skin 

allergies, kidney and liver dysfunction, defects in lungs and digestive system, A 1.3 mg/L 

concentration of copper in drinking water is the maximum allowed limit recommended by 

environmental agencies [13]. Electroplating parts, refinery industries, and jewelry refining 

are the major sources of silver and it can cause Alzheimer’s disease, fatigue, rheumatoid 

arthritis, etc. A maximum concentration of 0.1 mg/L is allowed for silver contaminants in 

drinking [13]. 

Chromium is usually found in the mining, dying industry, leathers, welding of 

stainless steel, etc., and it can produce lung cancer, dermatitis, dysfunction of the nervous 

system, and mental fatigue. The safety level of Cr in drinking water is 0.05 mg/L and 0.1 

mg/L, respectively [14]. A trace amount of zinc can cause bronchitis, respiratory failure, 

skin diseases, prostate cancer, nervous disorders. It is usually found in the chemical 

refineries, electroplating, welding, electric soldering, brass industry, and pigments. The 

WHO and EPA guideline value of zinc in water is 5 mg/L [15]. 

1.1.2 Conventional Techniques and Sensors for the Detection of Heavy Metals  

Water is essential for human and animal lives, plants, chemical and food industries, 

and energy production.  Heavy metals in water such as Hg, Pb, Cd, As, Cr, etc., can pollute 

the groundwater and drinking water. A variety of conventional techniques have been 

developed for the detection of these heavy metals including colorimetry [21, 22], Atomic 

Absorption Spectrometry (AAS) [23], fluorescence spectroscopy [24], UV-vis 

spectrometry [25], and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) [26]. 
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AAS utilizes the absorption of light for the quantitative detection of target metal elements. 

Light is absorbed by free metal atoms in solution or gaseous phase which can quantify the 

concentration of 70 different metal elements used in electrochemistry, biology, and 

pharmacology research [23]. ICP-MS is another technique where the sample is ionized by 

plasma followed by detection and quantification with a mass spectrometer. It has higher 

sensitivity and accuracy than AAS. [27]. Colorimetry is another absorption technique for 

the detection of target analytes using Beer-Lambert law. Gulsu and coworkers used 

mercaptoundecanoic acid-capped gold nanoparticles (AuNPs) and amino acids for the 

detection of multiple heavy metals. Due to the complex formation ability with metal ions, 

amino acid and AuNPs showed significant colorimetric response with excellent selectivity 

toward Hg2+, Cd2+, Fe3+, Pb2+, Al3+, Cu2+, and Cr3+ [28]. The fluorescence sensor is another 

powerful tool for sensitive and selective detection of toxic heavy metals. Wang et al. 

demonstrated amino acid-derived carbon dots for fluorescent detection of multiple heavy 

metal ions [29]. These functionalized carbon dots showed excellent fluorescence 

quenching response toward Hg2+, Cu2+, Fe3+ with high sensitivity and selectivity. 

Moreover, surface-enhanced Raman spectrometry [30], ion chromatography [31], and 

inductively coupled plasma optical emission spectrometry [32] are also utilized for the 

detection of heavy metals. Although these traditional techniques have enabled efficient 

detection of heavy metals, they are expensive, bulky, complex to operate, and inconvenient 

for on-site testing [33, 34].  In contrast, electrochemical methods have received significant 

attention from worldwide researchers for the determination of heavy metals in water due 

to simplicity, cost-effectiveness, excellent sensitivity, a low Limit of Detection (LOD), and 

on-site analysis [6, 35, 36]. Anodic stripping voltammetry (ASV) is a promising 
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electrochemical technique for trace level detection of toxic heavy metal ions owing to 

excellent sensitivity, simplicity, low detection limit, and the ability for simultaneous 

detection. 

ASV is a two-step technique consisting of deposition (accumulation) and stripping 

(oxidation). In the first step, the metal ion is deposited on the electrode surface using a 

constant potential, and then subsequently, stripping is performed which gives a current 

signal in the output to quantify the concentration of metal ions. The concentration of metal 

ions is proportional to the intensity of the current signal (height of the peak current). This 

accumulation of metal ions before stripping gives a low detection limit of an 

electrochemical sensor. When the stripping is done with a square wave   then it is known 

as square wave anodic stripping voltammetry (SWASV). Similarly, differential pulse 

anodic stripping voltammetry (DPASV) and linear sweep anodic stripping voltammetry 

(LSASV) is obtained. Among them, SWASV is the most sensitive and effective technique 

to detect heavy metal ions  [37-39]. 

1.1.3 Two Dimensional Nanomaterials: Structure and Properties 

1.1.3.1 Graphene and Graphene Oxide  

Two-dimensional (2D) nanomaterials consist of thin layers with a thickness of one 

atomic layer. In 2D nanomaterials, two dimensions are at the macroscale and one 

dimension is at the nanoscale (1 nm to 100 nm). 2D nanomaterials possess a high surface 

to volume ratio (aspect ratio) compared to bulk materials, which leads to unique properties 

with widespread applications [40]. 2D nanomaterials include such materials as graphene, 
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phosphorene, black phosphorous, hexagonal boron nitride, and transition metal 

dichalcogenides. 

Graphene is a widely recognized 2D material composed of a single layer of 

covalently bonded sp2-hybridized carbon atoms in a hexagonal crystal structure (Figure 1.1 

a) [41-43]. Graphene, graphite, carbon nanotubes (CNTs), and fullerenes are considered 

allotropes of carbon [44]. A spacing of about 1.42 Å exists between two neighboring 

carbon atoms in a single graphene sheet and each layer is stacked together with a van der 

Waals interaction with a spacing of about 3.35 Å (Figure 1.1b). Geim and Novoselov first 

successfully produced graphene through mechanical exfoliation in 2004 and they were 

awarded Nobel Prize in Physics (2010). Since then, research has focused on graphene 

because of its unique electrical, optical, chemical, mechanical, and thermal properties [45-

47]. Graphene shows a large surface area (2,600 m2 g-1), high electrical conductivity (3,189 

S cm-1), high electron mobility (200,000 cm2 V-1 s-1), good thermal conductivity (≈ 4,000 

W m-1 K-1), and high mechanical strength with a tensile strength of 130.5 GPa and Young’s 

modulus of 1 TPa [48-52]. These unique properties have made graphene as promising for 

biosensors, electronic sensors, gas sensors, and electrochemical heavy metal ion sensors 

[53, 54]. For example, a large surface area with high conductivity of graphene sheets can 

facilitate to adsorb a high density of analytes which consequently improves the sensitivity 

and downscaling of devices [55]. 
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Figure 1.1 (a) Ideal structure of a sheet of graphene that consists of an atomic-scale 

hexagonal lattice made of carbon atoms (b) Structure of graphene layers [41]. 

Graphene oxide (GO) is considered a precursor for the large-scale synthesis of 

graphene through solution-phase exfoliation, chemical, or thermal treatments [56]. GO has 

a graphene-like layered structure with abundant oxygen-containing functional groups on 

its surface including carboxyl (-COOH) and carbonyl (C=O) group at the edges and 

hydroxyl (-OH) and epoxy (C-O-C) on the basal plane, which makes it electrically 

insulating (Figure 1.2a) [55, 57-59]. The thickness of the single-layer GO measured by 

atomic force microscopy (AFM) is about 1 nm (Figure 1.2b). The presence of these 

oxygen-containing functional groups in GO can cause significant structural and 

compositional defects which in turn reduces the electrical conductivity and limit its 

application in electrical devices. However, these oxygen-containing groups can make GO 

promising for many other applications. For example, different oxygen functional groups in 

GO will facilitate the hydrophilicity and good dispersibility in many solvents including 

water. A thin film of GO can be prepared by drop-casting or spin coating of a stable GO 

dispersion. Besides use as excellent electrode materials, the functional groups in GO can 

(a) (b) 
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immobilize certain analytes due to electrostatic interactions which in turn increase the 

sensitivity and selectivity of the developed sensor devices. Further, large surface area and 

excellent electrocatalytic activities of GO improves the sensitivity of the GO-based sensors 

[60].  

Figure 1.2 (a) Structural model of a single layer of graphite oxide [61] (b) AFM images 

showing a close-packed graphite oxide monolayer on silicon wafer [62]. 

1.1.3.2 Transition Metal Dichalcogenides 

The rapid progress in the field of graphene research over the past few years has 

inspired researchers to explore other 2D materials [63, 64]. Single-layer Transition Metal 

Dichalcogenides (TMDs) are considered analogous to graphene for their intriguing 

properties [65, 66]. TMDs are the layered structure of inorganic materials with a chemical 

formula of MX2 where M is transition metal atom (Mo, W, Ti, Zr, Hf, etc.) and X is a 

chalcogen (S, Se or Te) (Figure 1.3).  

 

(a) (b) 
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Figure 1.3 Structure of TMDs materials (a) About 40 different layered TMD compounds 

exist [67] 

The transitional metals in the group of IV-VII present layered structures while VII-

X has non-layered structures. For example, a layer of metal atoms (M) is sandwiched 

between two layers of chalcogen (X) atoms in a monolayer of MX2, where a weak van der 

Waals interaction lies between stacking monolayers (Figure 1.4a). The stacking of each 

monolayer gives the thickness in the range of 6-7 Å [68]. The electronic properties depend 

on the number of layers in TMDs. For example, decreasing the number of layers gives an 

increased bandgap from about 1.3 eV for bulk MoS2 to about 1.9 eV for single-layer MoS2 

[69]. Depending on the coordination of metal and chalcogen atoms, TMDs show different 

polymorphs based on the coordination of metal and chalcogen atoms. For instance, the 2H 

phase shows a hexagonal symmetry with trigonal prismatic coordination while3R phase 

has rhombohedral symmetry with trigonal prismatic coordination, and the 1T phase has 

tetragonal symmetry with octahedral metal coordination (Figure 1.4b) [63, 67]. The 

number in each phase denotes the number of X-M-X units (i.e. number layers in the 

stacking sequence) per unit cell. Single layered TMDs show only trigonal prismatic (2H) 
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and octahedral (1T). The electronic properties of 1T phase TMDs are conducting while that 

of the 2H phase is semiconducting.  

 

 

 

 

 

Figure 1.4 (a) Three-dimensional schematic representation of a typical MX2 structure [70] 

(b) Schematics of the structural polytypes: 2H (hexagonal symmetry), 3R (rhombohedral 

symmetry), and 1T (tetragonal symmetry) [63].  

It is worthy to note that the transition of crystal phases of TMDs between these phases 

(from 2H to 1T) can be obtained by a variety of techniques including alkaline metals 

intercalation (Li, K, or Na), ammonium intercalation, annealing, mechanical exfoliation, 

solvent exfoliation, and CVD [67]. Zhang prepared single-layer nanosheets of MoS2 and 

WS2 through a simple lithium intercalation method which is shown in Figure 1.5a,b [71, 

72]. The thickness of MoS2 nanosheet and WS2 nanosheet was found 1 nm which can be 

observed on the inset of the photographs of their dispersions. 

(a) (b) 



www.manaraa.com

14 
 

 

  

Figure 1.5  Atomic force microscope images of  (a) MoS2 nanosheets (b) WS2 nanosheets 

on SiO2 substrates [71, 72]. The insets of the AFM images represent height profiles from 

the substrate onto the nanosheets and photographs of MoS2 nanosheets and WS2 nanosheets 

dispersions. 

As an emerging TMDs, WS2  has received significant attraction for gas sensing, 

electrochemical sensing, energy storage, and supercapacitors due to its high surface area, 

layered structure,  tunable bandgap, excellent electrical conductivity, and fast electron 

transfer kinetics [73-76]. The chemical and catalytic properties of TMDs mostly depends 

on the orientation and vacancy of the chalcogen atoms at the edge and basal planes. For 

example, the vacancy of S atoms at MoS2 edges enhances the adsorption of gas analytes 

which results in a superior sensor sensitivity compared to pristine MoS2 [77]. The electrical 

conductivity of TMDs also plays an important role in device performance. For example, 

metallic 1T-WS2 showed superior performance compared to semiconducting 2H-WS2 in 

the field of glucose biosensors [78], electrocatalysts [79], and supercapacitors [80]. Due to 

the fluorescence quenching properties, TMDs are also promising for the detection of 

different analytes including nucleic acids, heavy metals, glucose, etc. Because of the 

(a) (b) 
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excellent electrical conductivity and presence of abundant sulfur sites, WS2 is a promising 

candidate for the detection of heavy metals including Hg2+ and Ag+ [81] [82]. 

It is worthwhile to mention that the structural morphology of WS2 plays a crucial 

role in superior sensing performance. To date, many strategies including solvothermal [83], 

lithium-based-intercalation [84], hydrothermal synthesis [85], etc., have been employed to 

produce various morphologies including nanoribbons [85], nanoflakes [84], nanosheets 

[79], and nanospheres [86].  Furthermore, the large surface area, structural morphology, 

excellent chemical stability, and presence of active sites for analytes have made WS2 a 

potential electrode material for electrochemical sensors in the field of heavy metal sensing 

applications. 

1.1.4 Silver Nanowires: Properties and Applications 

One-dimensional (1D) metallic nanostructures (wires, rods, and tubes) have 

received significant attention due to their unique electronic, optical, thermal, chemical, and 

catalytic properties. Silver nanowires (AgNWs) is an example of a 1D-nanostructure with 

fascinating catalytic, optical, electrical, and chemical properties depending on their size, 

shape, crystallinity, and structure [87, 88].  Thus, AgNWs is a promising candidate for a 

variety of applications in the field of chemical sensors, optical devices, and electrocatalysts 

[89, 90]. In particular, AgNWs are used as an additive to increase the conductivity of the 

electrode materials by providing conduction pathways for faster electron transfer during 

chemical sensing and consequently improving the sensitivity and selectivity of the 

electrochemical sensors [91]. For example, AgNWs have been incorporated in chitosan 

film for nonenzymatic detection of H2O2 [92]. Wang et al. demonstrated an amperometric 
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sensor based on AgNWs and glucose oxidase (GOD) for sensing glucose with high 

sensitivity [93]. The resulting sensing performance toward glucose could be ascribed to the 

high conductivity, excellent catalytic activity, and large surface area of AgNWs. The 

biomimetic AgNWs templated by peptide nanofibers (PNF-AgNWs)-graphene hybrid 

modified electrochemical sensor exhibited high sensitivity, specificity,  and low detection 

limit toward H2O2 [94]. Due to the excellent flexibility, optical transparency, and 

mechanical stretchability, AgNWs received tremendous attention from worldwide 

researchers for developing strain and wearable sensors [95, 96]. For example, Cheng et al, 

fabricated a strain sensor using 2 nm thin AgNWs and AuNWs through a simple and cost-

effective drop-casting process which showed excellent stretchability and optical 

transparency [95]. Figure 1.6 shows a scanning electron microscopy (SEM) image of 

AgNWs and its application in display devices, solar panels, electrochemical biosensors, 

nanophotonic devices, and wearable devices. 
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Figure 1.6 Silver nanowires and their application in optical displays, electrochemical 

biosensors, nanophotonic devices, solar panels, and wearable devices [97-101].  

1.2 Previous Work 

1.2.1. Graphene, Graphene Oxide, and Composites for the Detection of Heavy Metals  

Due to the enhanced surface area, ultrathin nature, layered nanostructures, fast 

electron transfer kinetics, excellent electrocatalytic activity, and feasibility for 

functionalization, graphene and GO have become promising electrode materials for 

sensing [2, 102]. However, van der Waals force and π-π stacking interactions cause 

agglomeration of graphene sheets in the dispersions of GO [103, 104]. To solve these 

issues, a variety of strategies have been developed including the incorporation of metal 
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nanoparticles [105], metal oxide nanoparticles [7], metal nanowires [106-108], nafion 

[104], chitosan, and conducting polymer [109, 110] into graphene dispersions. These 

materials form a composite with GO which facilitates high sensitivity, selectivity, and 

lower detection limits toward chemical sensing by utilizing the synergistic effects of the 

individual material. 

Gong et al. (2010) used chitosan as a stabilizing agent to prevent the agglomeration 

of graphene sheets in dispersion [105]. They utilized AuNPs-graphene composite for the 

electrochemical detection of Hg2+. The resulting sensor showed a linear detection range of 

0.008-0.05 ppb and 0.1-60 ppb with a detection limit of 6.0 ppt toward Hg2+. Further, it 

could selectively detect Hg2+ even in presence of 20-fold concentrations of Cd2+, Co2+, 

Cu2+, Fe3+, Zn2+, and I- in the solution. It also showed the feasibility of the determination 

of Hg2+ in river water with high accuracy. The excellent sensing performance was 

attributed to the enhanced surface area, good conductivity, and excellent catalytic activities 

of the AuNP-chitosan-graphene composite [105].  

Wei et al. incorporated SnO2 nanoparticles on reduced Graphene Oxide (rGO) for 

enhanced detection of heavy metals [7]. The SnO2/rGO composite modified glassy carbon 

electrode could detect multiple heavy metal ions including Cd2+, Pb2+, Cu2+, and Hg2+ 

individually and simultaneously. Interestingly, the fabricated sensors showed higher 

sensitivity toward these heavy metals during simultaneous analysis compared to their 

individual analysis. The sensor responded linearly toward Cd2+, Pb2+, Cu2+, and Hg2+ in the 

range of 0.3-1.2 μM with a low LOD of 1.0 × 10-10, 1.8 × 10-10, 2.3 × 10-10, and 2.8 × 10-10 

M, respectively. An additional stripping peak observed between the Cu2+ and Hg2+ in the 
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SWASV response was ascribed to the lack of binding sites and the formation of 

intermetallic compounds [111, 112]. 

Ting et al. (2015) developed Graphene Quantum Dots (GQD) functionalized AuNP 

for the detection of Hg2+ and Cu2+ in aqueous media [113]. The resulting scaffold could 

detect Hg2+ and Cu2+ with a sensitivity of 2.47 μA/nM and 3.69 μA/nM, respectively. In 

addition to excellent electrochemical stability over a period of one week, it had a very low 

detection limit of 0.02 nM and 0.05 nM for Hg2+ and Cu2+, respectively. They proposed 

that the electrostatic interaction between Hg2+ and carboxyl and hydroxyl groups of GQD 

could form an R-COO-(Hg2+)-OOC-R complex for the selective detection of Hg2+. 

However, some agglomeration of GQD on AuNP was observed which may have degraded 

sensor performance. 

Zhou et al. (2013) introduced Ionic Liquid (IL) into GO to obtain a homogenous 

dispersion and the resulting GO-IL-AuNP composite was used for the enhanced sensing of 

Hg2+ in drinking water [114]. Using DPV analysis, a linear detection range of 0.1-100 nM 

and a detection limit of 0.03 nM toward Hg2+were achieved. 

Muralikrishna et al. utilized L-cysteine-rGO composite for simultaneous detection 

of multiple heavy metals with excellent sensitivity and a wide linear detection range with 

a detection limit of 0.366, 0.416, 0.261, 1.113 ppb for Cd2+, Pb2+, Cu2+, and Hg2+, 

respectively [115]. 

Wang et al. used Thymine (T) functionalized AuNP-rGO nanocomposites for 

selective detection of Hg2+ through the formation of a stable T- Hg2+-T complex [116]. 

Here, AuNP was immobilized on chemically reduced GO and thymine-1-acetic acid was 
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incorporated through covalent bonding of amine group of cysteamine. The T/AuNP/rGO 

modified biosensor showed a linear response in DPV toward Hg2+ in the range of 10 ng/L-

1.0 μg/L and a detection limit of 1.5 ng/L with an excellent selectivity response against 

other six metal ions. 

Zhang and coworkers developed graphene and nano Au modified electrode with 

the immobilization of single-stranded DNA probes for ultrasensitive and specific detection 

of Hg2+ at an attomolar (aM) level during SWV analysis. T- Hg2+-T complex enabled the 

proposed sensor to detect Hg2+ at 0.001 aM with a linear detection range of 1.0 aM-100 

nM. Moreover, it exhibited excellent selectivity toward Hg2+ against 50-fold 

concentrations of a variety of heavy metals including K+, Ba2+, Ca2+, Cd2+, Co2+, Cr2+, etc 

[117]. The T-Hg2+-T interactions were also utilized for Hg2+ detection in these reports 

[118]. N-doped rGO and MnO2 nanocomposite were used as scaffolds for electrochemical 

detection of Hg2+ by SWV and the resulting sensor showed a favorable sensitivity toward 

Hg2+ with a detection limit of 0.0414 nM [119].  

Graphene and rGO have been widely applied as a conducting channel material in 

field-effect transistor (FET) devices to investigate the real-time detection of various heavy 

metal ions. FET-based sensors work on the change of conductivity or mobility of the 

graphene channel under the absorption of metal ions via electrostatic interactions. For 

selective detection of metal ions, the surface of graphene is modified with a receptor for 

target meta ion through covalent or non-covalent binding [120]. Zhang et al. used 1-

octadecanethiol functionalized graphene as a channel on a FET device for the detection of 

Hg2+. The resulting sensor showed a detection limit down to 10 ppm [121]. Later, Sudibya 

et al. used metallothionein type II protein for metal ion bonding which required complex 
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fabrication and the resulting sensor suffered from chemical stability and repeatability 

concerns [122]. To address these issues, Chen et al. introduced AuNP and Thio Glycolic 

Acid (TGA) functionalized rGO (rGO/TGA-AuNP) composite. The resulting FET device 

could detect Hg2+ in the range of 2.5 × 10-8-1.42 × 10-5 M due to a change of conductivity 

[120]. A quick dynamic response was observed within a few seconds upon the addition of 

Hg2+ on sensor surface which demonstrates its real time applicability. The rGO/TGA-

AuNP hybrid sensor showed negligible response against five interfering ions, which 

confirms its excellent specificity toward Hg2+.  

In addition to electrochemical methods, a variety of other techniques including 

Surface Plasmon Resonance (SPR), UV-Visible absorption spectroscopy, colorimetry, etc., 

are extensively used for the analysis of heavy metals [82, 123-128]. Kamaruddin et al. 

proposed a hybrid of gold/silver/gold/chitosan-GO (Au/Ag/Au/CS-GO) for the efficient 

detection of  Pb2+ and Hg2+ in water using SPR [128]. A linear sensor response was 

observed for Pb2+ and Hg2+ in the range of 0.5-25 µM, which is far from the guidelines 

recommended by the WHO. Also, their developed sensor lacks the analysis of real samples 

such as drinking water. Further, Golsheikh et al. demonstrated a rGO-silver nanoparticles 

(AgNPs) composite for the optical detection of Hg2+ using UV-Visible absorption 

spectroscopy [126]. The obtained linear detection range for Hg2+ was 0.1 µM-100 µM with 

a detection limit of 20 nM. The sensor was not tested to detect Hg2+ in water samples.  

In summary, GO has been utilized for the development of an electrochemical sensor 

for the detection of Hg2+ in water and environmental samples with ultra-high sensitivity, 

excellent selectivity, and ultra-low detection limit. Furthermore, the incorporation of metal 
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nanowires such as AgNWs can form GO composites to enhance the sensitivity and lower 

the detection limit toward Hg2+ by utilizing the advantages of AgNWs and GO. 

1.2.2. Transition Metal Dichalcogenides and Composites for the Detection of Heavy 

Metals  

Jiang et al. first reported (2015) a few-layer MoS2 based field-effect transistor for 

the detection of Hg2+ in an aqueous environment [129]. The effect of Hg2+ ions on charge 

transport and photoluminescence properties of ultrathin MoS2 was investigated. The strong 

binding affinity of Hg2+ toward sulfur with a  stability constant of 2.5 × 1052 can effectively 

bind Hg2+ with MoS2 by the partial electron transfer from MoS2 to Hg2+, which eventually 

produces a p-type doping effect in n-type MoS2. Thus, the conductivity and 

photoluminescence in MoS2 can be modulated with the addition of Hg2+. The resulting 

MoS2 based FET sensor showed a decrease of conductivity in a few-layer MoS2 with 

increasing the concentration of Hg2+ in the range of 0-1 µM. The sensor showed an ultralow 

detection limit of 30 pM with excellent selectivity and specificity over 15 potential 

interfering ions, which demonstrate a promising device for Hg2+ detection in water samples.  

Zhou et al. developed a MoS2 nanosheets-AuNPs-DNA functionalized hybrid FET 

device on Si/SiO2 for real-time detection of Hg2+ in water [130]. The AuNPs decorated on 

the MoS2 surface will immobilize the Hg2+ specific DNA by gold-thiol interaction.  The 

formation of the thymine-Hg2+-thymine complex made the sensor highly selective toward 

Hg2+ against other ions. The binding of positively charged Hg2+ with DNA leads to an 

increased hole concentration in the MoS2 sensing material by causing an electron transfer 

from MoS2 to AuNPs. Thus, the conductivity of the p-type MoS2 channel increased under 
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the exposure of Hg2+ ions. A response time of 1-2 s and ultra-trace detection limit of 0.1 

nM were obtained using DNA-AuNPs functionalized MoS2 hybrid FETs. 

Nigam et al. utilized hydrothermally synthesized flower-like MoS2 for real-time 

detection of a trace amount of Hg2+ in water [131]. Here, the gate region of an AlGaN/GaN 

HEMT was functionalized with vertically aligned MoS2 and the change in drain to source 

current under the exposure of Hg2+was monitored in real-time. The formation of the Hg2+-

S complex and the electrostatic interaction between MoS2 and Hg2+ made enhanced sensor 

response. The sensor showed an interesting phenomenon of an initially increasing and then 

decreasing drain current properties with the increase of Hg2+ concentrations. A linear 

detection range of 0.1 ppb-1000 ppb with an excellent sensitivity of 0.64 μA/ppb and a low 

detection limit of 0.01152 ppb and a response time of 1.8 s toward Hg2+ were achieved.  

Aswathi et al. utilized solvent exfoliated MoS2 sheets for the electrochemical 

detection of Hg2+ in normal water and seawater [81]. A homogenous dispersion of MoS2 

was drop-cast on a glassy carbon electrode and dried at room temperature under air. Since 

Hg2+ acts as a strong oxidizer and S2- acts as a natural reducer, a spontaneous reduction of 

Hg2+ occurred on the MoS2 by forming Hg-S covalent bonds at room temperature without 

any preconcentration or accumulation steps.  Consequently, an ultra-low detection limit of 

0.000001 nM (0.2 ppq) toward Hg2+ was achieved with a wide linear detection range of 

0.1 nM-0.2 mM. Further, it showed excellent specificity toward Hg2+in presence of ten 

different metal ions, which can be attributed to the higher standard reduction potential of 

Hg2+ (+ 0.85 V) than other ions.  
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Li et al. demonstrated a one-pot technique for solvothermal synthesized flower-like 

WSe2 and WS2 as effective adsorbents of Pb2+ and Hg2+. Due to the nanosheet structure 

and the presence of abundant chalcogen ligands, WSe2, and WS2 showed an excellent 

uptake capacity for soft metal including Pb2+ and Hg2+ from water [132].  

In addition, the semiconducting properties of WS2 have been utilized for the 

fluorescent detection of heavy metals. Zuo et al. developed a dual-color biosensor by 

utilizing the fluorescent quenching properties of 2H-WS2 nanosheets and Hg2+ and Ag+ 

specific DNA probes [82]. Those mixture emitted green and red fluorescence signals at 

525 nm and 583 nm for Hg2+ and Ag+, respectively. The resulting sensor showed a linear 

response for Hg2+ and Ag+ in the range of 6.0-650.0 nM and 5.0-1000.0nM, respectively. 

Furthermore, a low detection limit of 3.3 nM and 1.2n M were calculated for Hg2+ and Ag+, 

respectively. A 10-fold higher concentration of interference metal ions including Co2+, 

Cu2+, Cd2+, Pb2+, Mn2+, Ni2+, Cr2+, Fe3+, Ca2+, Zn2+, K+, and Ba2+ were tested to find the 

selectivity of the sensor. No significant fluorescence was observed except for Hg2+ and Ag+ 

which demonstrates the excellent specificity of the biosensor. Ge et al. demonstrated a 

simple and highly sensitive biosensor for Hg2+ determination using the synergistic effect 

of T7 exonuclease assisted cyclic signal amplification and the fluorescence quenching 

ability of few-layer 2H-WS2 nanosheets [127]. Under optimum experimental conditions, 

the resulting sensor showed a linear increase of fluorescence intensity with increasing Hg2+ 

concentrations from 0.5 nM-20 nM with a detection limit of 0.1 nM. In addition to excellent 

selectivity, the sensor also successfully determined the concentrations of Hg2+ spiked in tap 

water and lake water samples with high accuracy. However, owing to the limited 

fluorescence quenching ability of 2H-WS2, these sensors suffer from narrow LDRs and 
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high LODs. Li et al. prepared nitrogen-doped WS2 through ultrasonic agitation of a mixture 

of bulk WS2 and melamine followed by calcination at 400֯C for 4 h under a nitrogen 

atmosphere [133]. A linear increase of fluorescence intensity with the growth of Hg2+ 

concentrations in the range of 0.1-5 μM with a detection limit of 20 nM was found. On the 

other hand, only a few works have explored the application of metallic 1T-WS2 for glucose 

biosensors [78], electrocatalysts [79], and supercapacitors [80]. As far as we are aware, 

there have been no reported works on electrochemical detection of Hg2+ using metallic 1T-

WS2. 

This work is the first report on the electrochemical detection of Hg2+ using metallic 

1T-WS2 microflowers. The flower-like WS2 microstructure provides a high electroactive 

surface area for enhanced loading and rapid diffusion opportunity for Hg2+ ions. The 

metallic phase of 1T-WS2 enhances the electrochemical properties by providing a fast-

heterogeneous electron transfer (HET) rate. Moreover, the presence of abundant active 

sites on both edge and basal planes of the 1T-WS2 will further improve the electrocatalytic 

performances [134, 135]. Owing to the high electroactive surface area, good conductivity, 

fast heterogeneous electron transfer rate, and abundant active sites, the exploitation of 1T-

WS2 microflowers for electrochemical sensing of Hg2+ leads to wide linear detection 

ranges with excellent sensitivity and selectivity. 

1.3 Motivation 

2D-nanomaterials and their composites for electrochemical detection of Hg2+ with 

excellent sensitivity, wide LDR, ultra-low LOD, and high selectivity would prevent the 

consumption of unsafe drinking water.   

https://www.powerthesaurus.org/as_far_as_we_are_aware/synonyms
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1.4 Objectives 

The objective of this work is to develop an electrochemical sensor based on 2D-

nanomaterials and their composites for the detection of Hg2+ in aqueous media with 

excellent sensitivity, wide linear detection range (1 nM-1 mM), ultra-low detection limit 

(down to nM or pM level) and high selectivity. The following tasks were performed to 

achieve the goal. 

1. Preparation of GO-AgNWs composite using a simple solution mixing process and 

synthesis of microflower shaped metallic 1T-WS2 using a facile hydrothermal method and 

propose a formation mechanism of microflower-like metallic 1T-WS2.  

2. Confirm the structural and morphological characteristics of GO, AgNWs, GO-AgNWs 

composite, and 1T-WS2 microflowers using X-ray diffraction, Raman spectroscopy, 

scanning electron microscopy, and transmission electron microscopy. 

3. Fabricate the GO-AgNWs composite and 1T-WS2 modified glassy carbon electrode 

sensors using drop-casting and electrochemical characterization of the developed sensors 

using cyclic voltammetry and electrochemical impedance spectroscopy. 

4. Optimize the experimental conditions including deposition potential, deposition time, 

concentrations of sensing materials, and pH of electrolyte buffer solution to find ultra-trace 

sensitivity and wide linear detection range of the sensors toward Hg2+. 

5. Study the analytical performance of the developed sensors by recording square wave 

anodic stripping voltammetry response toward different concentrations of Hg2+ under 

optimum experimental conditions. 
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6. Test the selectivity of the proposed sensors against a variety of interfering heavy metal 

ions including Cu2+, Fe3+, Ni2+, Pb2+, Cr3+, K+, Na+, Ag+, Sn2+, and Cd2+. 

7. Investigate the repeatability, reproducibility, and stability of the developed sensors and 

determine the feasibility of the sensors by detecting Hg2+ in real samples including tap 

water using the standard addition method. 

8. Propose a sensing mechanism of the developed sensors toward Hg2+. 

1.5 Organization of the Dissertation 

Chapter 1 describes the sources and effects of different heavy metals on public 

health and the environment. A variety of conventional methods to detect heavy metals have 

been discussed briefly. A comprehensive review of electrochemical sensors for heavy 

metal ion detection with advantages and limitations was also presented. The structure and 

properties of 2D materials including graphene, GO, and TMDs including MoS2, WS2, etc., 

have been discussed. Further, the previous work on graphene, GO, MoS2, WS2, and their 

composites for heavy metal detection and their limitations have been addressed. Finally, 

the motivation and objectives of this work have been presented. 

Chapter 2 describes the electrochemical sensors with the working principle. The 

sensing mechanism, method of analysis, and performance parameters have been presented. 

A variety of electrochemical characterization techniques and structural and morphological 

characterization techniques are briefly described. 

Chapter 3 discusses details of experimental procedures for the preparation of 

precursor materials, hydrothermal synthesis of 1T-WS2 microflowers, structural and 
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morphological characterization, sensor fabrication, and procedures for electrochemical 

measurements. 

Chapter 4 includes the results and discussions of the structural morphological 

characteristics of GO, AgNWs, GO-AgNWs composite, and 1T-WS2 microflowers. The 

electrochemical characterization and optimization of experimental conditions are 

discussed. Analytical performance of the developed sensors toward Hg2+ with obtained 

selectivity, repeatability, reproducibility, and stability are discussed in detail. The 

practicability of the sensors has been tested by real sample analysis. A detailed comparison 

of the sensing performance among developed sensors and previously reported sensors has 

been completed. 

Chapter 5 is a summary of this work with specific conclusions and future work. 
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CHAPTER 2 THEORY 

2.1 Electrochemistry 

The branch of chemistry that studies the electrical and chemical phenomenon is 

called electrochemistry. It discusses the chemical phenomenon that occurs by electric 

current and electrical phenomena like the generation of electrical current caused by 

chemical reactions [136]. Generally, electrochemistry studies the different fields of 

electrochemical phenomenon (like electrophoresis and corrosion), electrochemical devices 

such as electrochemical sensors, energy storage devices, batteries, supercapacitors, fuel 

cells, and electrochemical technologies  [136]. Scientists may want to know the kinetics of 

a chemical reaction for the analysis of reaction rates of a chemical species or to detect a 

trace amount of target metal ions or organic analytes in aqueous solutions. These studies 

need to employ electrochemical tools and electrochemical methods. The researcher may 

also have an interest in the understanding of electrochemical properties of chemical 

reactions on the electrode and the electrical characteristics on electrode-electrolyte 

interfaces. 

2.2 Electrochemical Sensors, Types, Advantages, and Principle of Operation 

Sensors that convert the signal from electrochemical phenomenon (oxidation or 

reaction between an electrode and target ions) into a measurable signal are known as 

electrochemical sensors. Electrochemical sensors usually include three types such as 

potentiometric, amperometric or voltammetric, and impedimetric. Potentiometric sensors 

deal with the change in voltage with changing the analyte concentration, while 

amperometric sensors deal with a change in current with the concentration of analytes via 
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oxidation and reduction reaction of analytes. Voltammetry techniques include cyclic 

voltammetry, differential pulse voltammetry, square wave voltammetry, 

chronoamperometry, etc. Impedimetric sensors measure the change in impedance due to 

the adsorption of analytes on the electrode surface. 

As an essential part of analytical chemistry, electrochemical sensors have received 

significant attention from worldwide researchers due to their low cost, excellent sensitivity 

toward target analytes, low detection limit, and faster response [6, 35, 36]. In addition, 

these sensors do not require trained personal or the knowledge of electrochemistry due to 

simple operation and procedures. Because of the portability, small size, and lightweight, 

electrochemical sensors are promising for on-site detection of environmental contaminants 

[6, 35]. A variety of functional materials and fabrication techniques are considered based 

on the application of the sensors. The interest in using different nanomaterials for 

electrochemical sensors to achieve high sensitivity and specificity has been dramatically 

increasing [137].  

The principle of operation of electrochemical sensors is based on the reaction of an 

analyte with a sensing material to generate either a current or voltage signal which is 

proportional to the concentration of the target analyte. These sensors can further interpret 

the electronic output into a digital format for user convenience which has been illustrated 

in Figure 2.1. There are three main steps involved in the operation of an electrochemical 

sensor: analyte adsorption, transduction, and signal processing. The analyte is first 

adsorbed on the sensor surface through a recognition element and then oxidized or reduced 

through the interaction between the analyte and sensing element and produced an analytical 

signal. Then the produced analytical signal is transduced by a transducer to an electronic 
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circuit in terms of current or voltage signal. A strong interaction between sensing elements 

and analytes results in an excellent sensing performance such as high sensitivity, 

selectivity, etc. The electrochemical sensors work based on the charge transfer between the 

electrode-electrolyte interface. When a constant or variable potential is applied through an 

electrochemical cell, an overpotential is formed due to the difference between applied 

potential and cell equilibrium potential. Due to this overpotential, electron transfer kinetics 

become favorable and chemical reactions like oxidation-reduction take place, which is 

known as the Faradic process. The faradic current can be expressed by (2.1). 

𝑖 = 𝑛𝐹𝐴𝑗   (2.1) 

where i is faradic current, n is electrons transferred during a redox reaction, F is Faraday 

constant, A is the area of the electrode, and j is the flux of electroactive analytes at 

electrode-electrolyte interfaces. The flux of electroactive analytes j demonstrates the rate 

of reaction which is determined as follows. 

𝑗 = 𝑘0𝐶𝑜   (2.2) 

Where 𝑘0 is defined as heterogeneous electron transfer rate constant which demonstrates 

the electron transfer kinetics and 𝐶𝑜 is the concentration of an analyte. The current signal 

is correlated to the concentration of analytes.  



www.manaraa.com

32 
 

 

 

Figure 2.1 Schematic of the steps involved in the operation of an electrochemical sensor. 

2.3 Sensor Parameters 

2.3.1 Sensitivity 

Sensitivity is the ratio of change of output signal to the change of input signal and 

an important performance parameter of a sensor. Sensitivity is also defined as the slope of 

the response curve (output signal vs input signal) of a sensor [138, 139]. For example, in 

the case of electrochemical sensors, sensitivity is the slope of the curve of current vs analyte 

concentrations. The high sensitivity to analytes in 2D materials-based sensors is attributed 

to the large surface area and available recognition sites for analyte-active sites interaction. 

A variety of strategies are employed to enhance the sensitivity including the addition of 

recognition elements that effectively bind the target analytes [140]. 

2.3.2 Limit of Detection 

Another important parameter of sensor performance is the limit of detection (LOD) 

or detection limit. It is the smallest concentrations of analyte that can be measured by the 

sensor and it is easily distinguishable from the baseline signal or blank sample [141, 142]. 
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Blank sample means an absence of analyte in the solution. LOD can be determined by two 

methods. One is experimental LOD and another one is calculated LOD. Experimental LOD 

is obtained from the measured sensor response for the lowest known concentrations of the 

analyte. The calculated LOD is calculated using LOD = 3σ/s, where σ is the standard 

deviation of blank sample i.e. absence of analyte on sample and s is the sensitivity. 

Sensitivity (s) is obtained from the slope of the response curve (sensor response vs 

concentrations of the analyte). Since the LOD is related to sensitivity, a higher sensitivity 

lowers the LOD. The conductivity of electrode materials, complete coverage of electrode 

materials, abundant active sites, large available surface area, and strong interaction 

between analyte-material can improve the sensitivity as well as LOD [143]. 

2.3.3 Linear Detection Range  

A detection range means the range of concentrations of analyte that corresponds to 

the maximum measurable concentration and the lowest measurable concentration (LOD) 

by a sensor [144]. A wide range of detection is desired to meet the sensing requirement.  

Linear Detection Range (LDR) is the detection range where sensor response is linear over 

a range of concentration of an analyte. LDR is the part of a fitted response curve where the 

detection range is linear with a correlation coefficient, R2 ≥ 0.95 [140]. A wide LDR is 

desired to calibrate a sensor and satisfy the sensing requirements. A wide LDR is important 

to assess the range of concentrations where a sensor can work reliably and obtain results 

precisely and accurately. In contrast, higher-order equations or mathematical 

manipulations are needed for a non-linear sensor to establish a relationship between analyte 

concentration and response. If an output data fall outside the detection range, large 

inaccuracies in the measured data or sensor damage can occur. A wide LDR can be 
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obtained by considering the suitable electrode materials, the analyte-material interactions, 

and available surface area [140]. 

2.3.4 Selectivity  

Selectivity is the ability of a sensor to discriminate the target analytes against a 

variety of potential interferents without any interference [139]. It is also known as 

specificity. The intensity of the analytical signals obtained from the target analytes is 

compared with that of the interferents to examine the selectivity of an analytical device. 

Moreover, the use of recognition elements on an analytical device can selectivity detect the 

target analytes over possible interferents. Further, the manipulation of experimental 

conditions such as temperature and pressure can be useful to improve the selectivity of an 

analytical device [140]. High selectivity in a mixture of various analytes is always desired 

for sensors. 

2.3.5 Stability 

Stability is defined as the ability of a sensor to produce the same output for the same 

analyte concentration over a length of time. The stability of a sensor can be realized by 

comparing the sensor response measured by a sensor for a prolonged period [141]. The 

stability of a device is important for continuous and routine measurement of environmental 

samples. It is desired for a sensor to be unaffected under extreme chemical environmental, 

mechanical, or physical stress [140]. 

2.3.6 Repeatability 
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The ability of a sensor to produce the same output toward the same analytes for a 

couple of consecutive measurements under the same measurement conditions is known as 

repeatability[145]. Repeatability measures the precision of a sensor. Repeatability is 

usually quantified by measuring relative standard deviation (RSD) of multiple 

measurements with a sensor. A low RSD confirms the good repeatability of a sensor. 

2.3.7 Reproducibility 

The reproducibility of a sensor is defined is the ability to produce the same output 

signals under different measurement conditions [145]. It may be the ability of multiple 

sensors fabricated with the same procedures to produce the same output for an analyte. 

Repeatability also measures the precision of a sensor It is also quantified by calculating 

RSD of measured output signals using multiple sensors. A low RSD confirms the good 

reproducibility of a sensor. 

2.3.8 Recovery 

The recovery is the ratio of the measured concentration to the added concentration 

of analytes in a test sample. It measures the accuracy of a sensor. The recovery is quantified 

in percentage. A high percentage of recovery close to 100% denotes the high accuracy of 

a sensor. 

2.4 Methods of Analysis  

2.4.1 Square Wave Anodic Stripping Voltammetry 
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Stripping voltammetry is an ultrasensitive amperometric technique and the most 

widely used technique for metal ion detection. Square Wave Anodic Stripping 

Voltammetry (SWASV) allows for the rapid detection of heavy metal ions in water with 

high accuracy. SWASV has two steps for the sensing target analytes at the sub nanomolar 

range. The first step is deposition or accumulation (reduction) where the target analyte or 

chemical species are electrodeposited on an electrode surface by applying a constant 

potential. Due to this preconcentration step, a lower detection limit of target analyte in sub 

nanomolar range can be achieved [146]. The deposition step may be an anodic or cathodic 

reaction. Generally, the deposition involves the cathodic process where the target analytes 

or species from the electrolyte solution are reduced on the electrode surface (Figure 2.2). 

The second step is stripping (oxidation) where the electrode is scanned with an applied 

range of voltage using square wave voltammetry (SWV). During stripping, the deposited 

or preconcentrated analytes as a thin film or amalgam on the electrode surface will be 

stripped or oxidized at a specific potential. Each analyte or species has unique stripping or 

oxidation potential. The accumulation of electrons during stripping will result in faradic 

current which is proportional to the concentration of the target analytes or species. The 

combination of stripping potential and faradic current information enables both the 

identification of the ion as well as the concentration.  
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Figure 2.2 Principle of square wave anodic stripping voltammetry. 

SWV is a form of linear potential sweep voltammetry where a symmetrical square 

wave is superimposed on a staircase potential (Figure 2.3).  The current is sampled at the 

end of the forward pulse (i1) and reverse pulse (i2). Consequently, the effect of capacitive 

current (non-faradaic or charging) on the faradic current signal is minimized.   

 

Figure 2.3 A symmetrical square wave is superimposed on a staircase potential. 

The net current (i1-i2) is shown in Figure 2.4 where the peak current is directly 

proportional to the concentration of the target analyte in the solutions. 

∆𝑖𝑝 =
𝑛𝐹𝐴𝐷0

1/2
𝐶0

∗

(𝜋𝑡𝑝)1/2 ∆𝛹𝑝    (2.3) 

https://en.wikipedia.org/wiki/Voltammetry
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where Δip denotes differential peak current, A is electroactive surface area, C0* is the 

concentration of analytes, D0 is diffusion constant, tp is the pulse width, and ΔΨp is a 

unitless parameter that measures the peak height of SWV. 

 

Figure 2.4 A typical square wave voltammetry curve. The voltammogram consist of a 

forward current (i1), reverse current (i2), and net current (i1 - i2) [147]. 

2.4.2 Cyclic Voltammetry 

Cyclic voltammetry is a voltammetry technique where a voltage is applied linearly 

with time in an electrochemical cell and the resulting current is measured between the 

working electrode and the counter electrode. Cyclic voltammetry is widely used to analyze 

the redox behavior of chemical species, reaction kinetics, and electron transfer properties 

of redox species [148]. 
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In cyclic voltammetry, the potential between the working electrode and the counter 

electrode is linearly varied from a negative to a positive potential with the help of a 

potentiostat which is called forward scan (Figure 2.5). Further, the applied voltage is swept 

back to the reverse direction from positive to negative voltage until it reaches a preset value 

which is called a reverse scan. This forward and reverse scan are repeated multiple times 

and the resulting current between the working electrode and the counter electrode is 

recorded and plotted for potential. The resulting ‘duck-shaped’ plot is known as a cyclic 

voltammogram.  

 

Figure 2.5 A triangular voltage waveform. 

A typical plot of cyclic voltammograms is shown in Figure 2.6. Here, in the 

beginning, the voltage is swept in a forward scan and then in a reverse scan with a triangular 

voltage.  In the forward scan, the voltage of the working electrode is scanned from a 

negative voltage (- 0.4 V) to a positive voltage (+ 0.4 V). In the beginning, the potential is 

not enough to oxidize the analyte (point a). The oxidation of analyte on the working 

electrode starts at oxidation onset potential Eonset and resulting oxidation current increases 
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exponentially with increasing scanning potential (point b). Due to applied potential, the 

analyte (M) near to the working electrode will start to oxidize i.e. lose electrons and become 

M+. The transfer of electron will result in an electrical current which is called faradic 

current. Meanwhile, the unreacted analytes (M) will diffuse toward the working electrode 

due to the concentration gradient of analytes and oxidized and a diffuse double layer (DDL) 

near to electrode surface of the sub-nanometer-thick is formed by the building of M+ on an 

electrode surface. This DDL controls the rate at which analytes diffuse toward the 

electrode. Once the DDL reaches a certain size or certain thickness, the diffusion process 

becomes slow down. As a result, the current reaches to maximum called anodic peak 

current ipa at point c with anodic peak potential Epa.  

 

Figure 2.6 Cyclic voltammogram for a reversible electrochemical process [148]. 

Further, the increase of positive voltage results in a decrease in the current (point 

d) until a steady-state arrives where there has no effect of further increase of positive 

voltage. Here, this phenomenon is due to the increase of DDL thickness which impedes the 

diffusion of M to the electrode, resulting in a decrease in an oxidation reaction and 
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eventually decreasing the anodic current. During the reverse scan, the analytes still get 

oxidized until it reaches the voltage where the oxidized analyte on the electrode surface 

can be reduced (point e). The reduction process is the reverse process of the oxidation 

process in the opposite direction with a cathodic peak current (ipc) and cathodic peak 

potential (Epc) (point f). Here, during the reverse sweep of voltage, M+ close to the electrode 

starts to reduce (gain of electrons) and becomes M by creating a negative or cathodic 

current. Due to the concentration gradient, M+ will diffuse toward the electrode and get 

reduced eventually increasing the cathodic current. Once the diffusion layer builds up to a 

certain size, the diffusion of M+ will become slow down and cathodic current will 

eventually start to decrease. For a reversible redox process, the anodic peak current and 

cathodic peak current should be equal in magnitude with an opposite sign. Randles-Sevcik 

equation describes the peak currents, ip of a reversible redox system by the following 

equation [148]: 

𝑖𝑝 = (2.69 × 105)𝑛3/2𝐴𝐶𝐷1/2𝑣1/2 (2.4) 

Where n denotes the number of electrons involved in the redox process, A is the area of 

the electrode (cm2), C is the concentration of an analyte (mol cm-3), D is the diffusion 

coefficient (cm2 s-1), and v is the scan rate of potential (V s-1). 

2.4.3 Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS) is an important characterization 

technique for the understanding of the dynamics of an electrochemical process. EIS reveals 

the response of an electrochemical cell due to the application of electrical potential. This 

technique is widely used to characterize battery, fuel cells, supercapacitors, and 
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electrochemical devices. EIS involves the application of an AC voltage and the response 

of the system is recorded as a function of frequency which reveals the internal dynamics 

of a nonlinear electrochemical process. The electrochemical impedance is defined as 

follows [149, 150]: 

𝑍 =
𝑉0sin (𝜔𝑡)

𝐼0sin (𝜔𝑡+𝜑)
= 𝑍0

sin (𝜔𝑡)

sin (𝜔𝑡+𝜑)
   (2.5) 

Where Z is the impedance, V0 is the amplitude of voltage, I0 is the amplitude of current, 𝜔 

is the angular frequency, t is the time, and  𝜑 is the phase. By plotting the equivalent 

electrical circuit, the value of resistance and capacitance can be determined. Most of the 

electrochemical cells have two types of resistance: a solution resistance due to the 

electrolyte and charge transfer resistance at the electrode-electrolyte interface. The solution 

resistance can be used to determine the ionic conductivity of the electrolyte. The electrode-

electrolyte interface can be modeled as a capacitance. Charge transfer resistance 

determines the charge carrier dynamics and current exchange in the electrode-electrolyte 

interface. Due to the accumulation of counter ions from electrolyte close to the electrode 

form an electrical double layer (EDL) which in turn develops a capacitance in the electrode-

electrolyte interface [150]. However, the capacitance in electrode-electrolyte behaves 

nonlinearly which can be ascribed to the non-uniform redox reaction rates and roughness 

of the electrode surface. In terms of a complex number, the sinusoidal ac voltage and 

current can be expressed as follows [151]: 

𝑉(𝜔, 𝑡) = 𝑉0 exp(𝑗𝜔𝑡)   (2.6) 

𝐼(𝜔, 𝑡) = 𝐼0 exp(𝑗𝜔𝑡 − 𝜃)   (2.7) 
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where j2 = -1, V0, and I0 is the amplitude of voltage and current, respectively. Thus, equation 

(2.5) can be written as: 

𝑍(𝑗𝜔) =
𝑉(𝜔,𝑡)

𝐼(𝜔,𝑡)
=

𝑉0

𝐼0
𝑒𝑗𝜃 = 𝑍0𝑒𝑗𝜃  (2.8) 

According to Euler’s formula with substituting Z0 by |Z|, the equation (2.8) can be 

expressed as follows: 

𝑍(𝑗𝜔) = |Z|(cosθ + jsinθ)   (2.9) 

Equation (2.9) can be further expressed as follows: 

𝑍(𝜔) = 𝑍𝑟𝑒 + j𝑍𝑖𝑚    (2.10) 

Where 𝑍𝑟𝑒 = |Z|cosθ  and 𝑍𝑖𝑚 = |Z|sinθ   

Further, the EIS data can be interpreted as a Nyquist plot where the imaginary impedance 

(Zim) of an electrochemical cell is plotted against real impedance (Zre). The equivalent 

model of an electrochemical cell in terms of electrical parameters is called Randles 

equivalent circuit [152]. Figure 2.7 shows a typical Nyquist plot for an electrochemical 

sensor and Figure 2.8 shows the Randles equivalent circuit. It can be seen that Nyquist 

plots contained a semicircle at higher frequencies corresponding to the electron-transfer-

limited process and a straight line at lower frequency indicating the diffusion-limited 

process [153, 154]. The diameter of the semicircle represents the charge transfer resistance 

(Rct) of the electrode-electrolyte interface.  Rs and W represent the solution and Warburg 

diffusion resistance, respectively. Warburg diffusion resistance describes the diffusion of 

analytes or chemical species toward the electrode or away from the electrode. The double-



www.manaraa.com

44 
 

 

layer capacitance formed on the electrode-electrolyte interface is represented by C [155]. 

Due to the accumulation of the ions close to the electrode surface, the capacitance increases 

at electrode-electrolyte interfaces. The non-ideal behavior of the capacitor can be ascribed 

to the surface roughness of electrode and uneven reaction rates.  

 

Figure 2.7 Typical Nyquist plot for an electrochemical sensor consists of a semicircle and 

a linear curve.  The diameter of the semicircle denotes charge transfer resistance. 

 

Figure 2.8 Randles equivalent circuit consists of Rs, Rct, W, and C. 

2.5 Reduction Potential and Standard Reduction Potential 

C

Rct W

Rs
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Reduction potential, measured in volts (V) or millivolts (mV), refers to the potential 

of a chemical species which determines the tendency of a chemical species (ion or 

molecule) to be reduced by gaining electrons [156]. It is noted that each chemical species 

possesses an intrinsic reduction potential. The more positive the reduction potential of a 

chemical species, it is more likely that the chemical species gains an electron and therefore 

more tendency to be reduced. To calculate the reduction potential of a redox reaction under 

non-standard conditions i.e. at any temperature and concentration of reactants and 

products, the following Nernst equation is used [157].  

𝐸 = 𝐸0 −
𝑅𝑇

𝑛𝐹
𝑙𝑛𝑄    (2.11) 

where E denotes the reduction potential under non-standard condition, E0 is the standard 

reduction potential, n is the number of transferred electrons in the reaction, Q is the 

reaction quotient, T is temperature, R and F are the gas and Faraday constants, 

respectively. 𝑄 =
𝐶𝑐𝐷𝑑

𝐴𝑎𝐵𝑏 for the following reaction: 

aA + bB → cC + dD   (2.12) 

The standard reduction potential is defined as the reduction potential that measures 

the tendency of a chemical species to be reduced under standard conditions. The standard 

conditions include a temperature of 25 °C, the concentration of chemical species will be 1 

molar (M), and the pressure will be 1 atm. The standard reduction potential is usually 

measured relative to a Standard Hydrogen Electrode (SHE), which has a potential of zero 

volts. The symbol of standard reduction potential is E0
red or E0. It is measured in a half-

reaction. Below are a few examples of standard reduction potential (E0) for a few chemical 
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species [158]. Here, Hg2+ has a more positive standard reduction potential than Cu2+ and 

Ag+, which means Hg2+ has more tendency to reduce over Cu2+ and Ag+ in a solution. 

2 H+ + 2 e− ⇌ H2(g); E0 = 0 V 

Cu2+ +  e− ⇌ Cu (s); E0 = + 0.34 V 

Hg2+ + 2 e− ⇌ Hg(l); E0 = + 0.85V 

Ag+ +  e− ⇌ Ag(s); E0 = + 0.7996 V 

On the other hand, the standard oxidation potential is defined as the is the oxidation 

potential that measures the tendency of a chemical species to be oxidized by losing 

electrons under standard conditions. The more negative the standard oxidation potential of 

a chemical species, it is more likely that the chemical species leaves electron and therefore 

more tendency to be oxidized. Standard oxidation potential (E0
ox) is the opposite of the 

standard reduction potential (E0
red) for a species (E0

ox = - E0
red). 

2.6 Operating Principle of the Characterization Techniques 

2.6.1 Raman Spectroscopy 

Raman spectroscopy is an important characterization technique for the 

understanding of material characteristics including chemical structure, crystallinity, 

molecular structure, molecular bonds [159]. Raman spectroscopy involves the scattering 

phenomenon between a high-intensity light incident from a laser source and a chemical 

bond within a material. If the scattered photon has the same wavelength (𝜆𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = 𝜆𝑙𝑎𝑠𝑒𝑟) 

of the incident laser due to the interaction with the material, it is called elastic scattering or 
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Raleigh scattering. Here, the scattered photon conserves the same energy of an incident 

photon, but different direction. This Rayleigh scattering does not provide any information 

about the characteristics of material [160]. 

In contrast, if the scattered photon has a different wavelength (usually 𝜆𝑠𝑐𝑎𝑡𝑡𝑒𝑟 >

𝜆𝑙𝑎𝑠𝑒𝑟) than the incident laser due to the exchange of energy between laser light and 

material, it is called Raman scattering or inelastic scattering. Since the molecule gains 

energy, the photon shifts to lower energy. This Raman scattering can provide useful 

information about the characteristics of a material such as chemical structure, crystallinity, 

molecular structure, and phase. A typical Raman spectrum shows several peaks with 

different intensities and wavelengths. The intensity of the peak relates to the crystallinity 

of a material. A narrow and high-intensity peak means high crystallinity of material [161]. 

On the other hand, wide and low-intensity peak denotes disorder in the crystal structure of 

a material. Each peak denotes a vibrational property of a specific molecular bond including 

C-C, C-H, C-N, C=O, etc. For instance,  because of  Raman scattering,  graphene shows 

two characteristic peaks in the Raman spectrum such as D band at 1350 cm-1 and G band 

at 1580 cm-1 (Figure 2.9) due to the sp3 hybridized carbon and the first order in-plane 

scattering of the E2g phonon of the sp2 carbon lattice, respectively [115, 162, 163]. 
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Figure 2.9 Raman spectrum of graphene [115]. 

Since Raman shifts are related to energy, it is usually expressed in terms of 

wavenumber which is the inverse of wavelength i.e. cm-1. The equation of Raman shift can 

be expressed as follows [164]: 

∇𝑣 = (
1

𝜆0
−

1

𝜆1
)   (2.13) 

where ∇𝑣 is the Raman shift (cm-1), 𝜆0 is the wavelength of incident laser, and 𝜆1 is the 

wavelength of scattered light. As the wavelength is expressed in a nanometer, so the above 

equation can be written as follows. 

∇𝑣 (𝑐𝑚−1) = (
1

𝜆0(𝑛𝑚)
−

1

𝜆1(𝑛𝑚)
) ×

107𝑛𝑚

𝑐𝑚
 (2.14) 

2.6.2 X-ray Diffraction  

X-ray diffraction (XRD) is an important technique to get detailed information about 

the crystal structure of materials. Qualitative and quantitative information about 
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crystallinity (such as single crystalline, polycrystalline, and amorphous), phase, the lattice 

constant, and crystal plane of a material can be found from X-ray diffraction. When a beam 

of X-rays is incident on the crystal plane of a sample, the incident X-rays are scattered and 

diffracted by the atoms of the target material (Figure 2.10). Further, the diffracted X-rays 

undergo constructive or destructive interference based on the crystallinity of the material. 

The constructive interference of diffracted X-rays produces a diffraction pattern with an 

intensity depending on the type and orientation of atoms in the crystal structure. 

 

Figure 2.10 Schematic diagram of the principle of X-ray diffraction. 

Bragg’s law describes the constructive interference of diffracted X-rays by the equation 

below [165]. 

2dsinθ = nλ    (2.13) 
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where d denotes the spacing between two crystal planes,  θ is the angle between incident 

X-ray and the crystal plane, λ denotes the wavelength of the incident X-ray, 2dsinθ is the 

path difference between the incident and diffracted x-rays,  and n is an integer. 

2.6.3 Scanning Electron Microscopy 

An electron microscopy for the imaging of a sample surface using a high energy electron 

beam is known as a scanning electron microscope (SEM). It is used to characterize the 

surface morphology of a material by detecting the emitted secondary electrons because of 

the interaction between high energy primary electrons and atom of the sample. It allows 

the imaging of the morphology of a sample with the magnification of up to 300,000x and 

resolution of 3 nm [166]. Figure 2.11 shows the schematic diagram of a typical scanning 

electron microscope. Here, an electron gun (cathode) which contains tungsten filament 

generates an electron beam by the high voltage. The generated electron beam is accelerated 

downward by the strong electric field between anode and cathode and these electron beams 

are known as primary electrons.  The electrons are focused into an electron beam through 

a condenser lens and the scanning coils produce magnetic fields that cause back and forth 

deflection (scanning) of the condensed beams. Further, the primary electron beams are 

focused on the sample surface by the electromagnetic lens called the objective lens. After 

the incidence of primary electrons on the target sample, loosely bonded outer electrons of 

an atom are emitted which are called secondary electrons. These secondary electrons are 

collected by a secondary electron detector for imaging and gives information about the 

surface topography. On the other hand, when the primary electrons penetrate the depth of 

the sample, a few electrons are reflected due to elastic scattering which is called Back 

Scattered Electron (BSE). The elemental distribution of a material can be provided by these 
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BSE. In addition, characteristics X-rays are emitted when a primary electron removes an 

inner shell electron and eventually a high energy electron from outer shell jumps to fill that 

inner shell vacancy by releasing an x-ray. The energy of characteristics X-rays is measured 

by Energy Dispersive x-ray Spectroscopy (EDS) which gives information about elemental 

identity, elemental composition, and elemental mapping. 

 

Figure 2.11 Schematic diagram of the principle of scanning electron microscopy. 

2.6.4 Transmission Electron Microscopy  

An electron microscopy to visualize and analyze a sample in the scale of a 

micrometer to a nanometer is known as transmission electron microscopy (TEM). It gives 

detailed information about the microstructure of a sample with high magnification and 

resolution images. It allows the imaging of the morphology of a sample with the 

magnification of up to 1,000,000x and resolution below 1 nm [166]. TEM provides 
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quantitative and qualitative analysis of morphology, crystal structure, crystallization, 

growth of layers, crystal orientation, crystal phases, lattice constraints, chemical 

composition, and defects in semiconductors of a sample. TEM works on the principle of 

an image created by the transmission of a high energy electron beam through a sample in 

a high vacuum which is captured by a detector.  Here, the transmission of electrons strongly 

depends on the thickness, structure, and properties of the material including material 

density, elemental composition, etc. For instance, thin and porous material will allow more 

electrons to transmit while the thicker and dense material will allow a few electrons to 

transmit. The transmitted electrons are projected into a phosphor screen for imaging [166]. 

Figure 2.12 illustrates the schematic diagram of the TEM. 
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Figure 2.12 Schematic diagram of the principle of transmission electron microscopy  

The thermally generated electrons from a tungsten filament cathode are accelerated 

toward the sample. Meanwhile, the condenser lens focused the electrons on a sample while 

part of it transmitted through the sample based on the thickness of the sample. After 

transmitting through the specimen, the electron beams will be refocused into an image on 

a phosphor screen by an objective lens. The contrast of the image is enhanced by the 

objective lens. Two other lenses including intermediate lens and projector lens enlarged 

the resulting image which further strikes on a phosphor screen. The striking image on the 
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phosphor screen produces light which allows users to visualize the image. If more electrons 

transmitted through the sample, it represents a lighter area on the TEM image and if fewer 

electrons transmit through the sample that area is represented by a dark area on the TEM 

image. 

2.6.5 Fourier Transform Infrared Spectroscopy  

Fourier Transform Infrared Spectroscopy (FTIR) is an analytical instrument that is 

used for the chemical identification of organic, inorganic, and polymeric materials [167]. 

In FTIR analysis, infrared radiation with a wavelength in the range of 100-10,000 cm-1 is 

sent through a sample where a portion of the incident light is absorbed and a portion is 

transmitted. Figure 2.13 shows a schematic diagram of the FTIR spectrometer. A beam of 

light from a coherent source is split into two parts by a beam splitter A part of the split 

beam is directed toward a moving mirror that moves at a constant velocity and another part 

is reflected in a fixed mirror. The recombined beam is passed through the sample and 

detected through a detector. The detected signal is finally interpreted as a spectrum 

representing a molecular fingerprint of the sample. Each molecule or chemical bond shows 

a unique fingerprint at a specific wavelength in the spectrum [167, 168].  
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Figure 2.13 Schematic diagram of an FTIR spectrometer [168]. 
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CHAPTER 3 EXPERIMENTAL PROCEDURES 

3.1 Materials 

Table 3.1 List of materials with Chemical Abstracts Service (CAS) number and 

vendor  

Name CAS # Vendor 

Sodium acetate (CH3COONa), ≥99.0% 127-09-3 Sigma 

Aldrich 
Acetic acid (CH3COOH) 64-19-7 

N,N-Dimethylformamide (C3H7NO) 68-12-2 

Chromium (III) bromide hexahydrate 

(Br3Cr·6H2O), 99%  

13478-06-3 

Thiourea (CH4N2S), ≥99.0%  62-56-6 

Graphene oxide powder (CxOyHz) 796034 

Oxalic acid dihydrate (C2H2O4.2H2O), 

≥99%  

6153-56-6 

Silver Nanowires (AgNWs), 0.5% 

(isopropyl alcohol suspension)  

7440-22-4 

 



www.manaraa.com

57 
 

 

Name CAS # Vendor 

Potassium ferricyanide (III) (C6N6FeK3), 

<10 μm, 99%  

13746-66-2 Fisher 

Scientific 

Lead chloride (PbCl2), 98%  7758-95-4 

Cupric chloride (CuCl2), 99.999%  7447-39-4 

Cadmium nitrate (CdNO3), 99.997% 10022-68-1 

Sodium chloride (NaCl), ≥99.5% 7647-14-5 

Tin (II) chloride (SnCl2), ≥99.99% 7772-99-8 

Silver nitrate (AgNO3), ≥99.0% 7761-88-8 

Iron (III) chloride (FeCl3), ≥99.99% 7705-08-0 

Nickel (II) chloride (NiCl2), anhydrous, 

99.99%  

7718-54-9 

Ammonium tungsten oxide hydrate 

((NH4)6W12O39·xH2O) 

12333-11-8 

Potassium chloride (KCl), 99% 7447-40-7 

Mercury (II) chloride (HgCl2), 99% 7487-94-7 STREM 

chemicals 

https://www.sigmaaldrich.com/catalog/product/sigald/209139?lang=en&region=US
https://www.sigmaaldrich.com/catalog/search?term=7761-88-8&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=US&focus=product
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Platinum (Pt) electrode of 1.6 mm diameter was purchased from Bioanalytical 

Systems Inc., USA. The body of the Pt electrode is made of polytetrafluoroethylene (PTFE) 

with a Cu-Cr alloy as a contact. Glassy carbon electrode (GCE) with a diameter of 3.0 mm 

diameter was purchased from CH Instruments, Inc., Texas, USA. The reference electrode 

(Ag/AgCl) and counter electrode (platinum wire) were purchased from AMETEK 

Scientific Instruments, USA. A Fisher Science Education pH meter was purchased from 

Fisher Scientific, USA. 

3.2 Fabrication of Electrochemical Sensors 

3.2.1 Preparation of Graphene Oxide-Silver Nanowires Composite Dispersion 

Figure 3.1a shows the GO powder as received. To prepare the GO dispersion, 6.0 

mg of GO powder was weighed and added to 6.0 mL absolute ethanol. A homogenous 

dispersion of GO (1.0 mg mL-1) was obtained by the ultrasonication of the above mixture 

for 2 hours at 25°C. The dispersion of GO was kept at room temperature (Figure 3.1b). 

Meanwhile, the suspension of silver nanowires (AgNWs) was magnetically stirred for 30 

min under room temperature (Figure 3.1c). Then different weight ratios of GO and AgNWs 

composite were prepared by mixing AgNWs suspension into GO dispersion followed by 

stirring for another 20 min (Figure 3.1d). Three different weight ratios of GO-AgNWs 

composite such as GO:AgNWs = 1:1, GO:AgNWs = 1:2, GO:AgNWs = 1:0.5 were 

prepared to find the optimum weight ratio. 
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Figure 3.1 (a) GO powder (b) Dispersion of GO (c) AgNWs dispersion (d) GO-AgNWs 

dispersion obtained by centrifugation. 

3.2.2 Hydrothermal Synthesis of 1T-WS2 and 2H-WS2 Microflowers  

A simple hydrothermal method was exploited for the synthesis of 1T- WS2 

microflowers. Figure 3.2 shows the schematic diagram of the hydrothermal synthesis of 

1T- WS2. In the beginning, 0.7g of ammonium tungsten oxide hydrate and 0.7g of thiourea 

were weighed and their mixture was dissolved in 30 mL of deionized water under magnetic 

stirring for 30 min. Meanwhile, 0.9g of oxalic acid dihydrate was weighed and added in 

the above mixture as a catalyst. The resulting mixture was stirred for another 30 min to 

achieve a homogeneous solution. After that, the mixture was transferred to a 40 mL Teflon-

lined stainless steel autoclave and kept in a preheated furnace at 220 °C for 48 h. After that, 

the autoclave was cooled down at room temperature. The black solution was washed with 

ethanol by centrifugation at 3000 rpm for at least three times and dried at 60°C overnight 

under vacuum to obtain the black powder of 1T-WS2.  

(a) (b) 

(c) (d) 
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For the synthesis of 2H-WS2, 0.7g of ammonium tungsten oxide hydrate, 0.7g of 

thiourea, and 2.0g of oxalic acid dihydrate were dissolved in 30 mL of deionized water 

under magnetic stirring for 30 min. After that, the mixture was transferred to a 40 mL 

Teflon-lined stainless steel autoclave and kept at 200 °C for 24 h and followed the same 

procedure as 1T-WS2 for the collection of black powder of 2H-WS2. A Teflon-lined 

stainless steel autoclave and a furnace 1400 are shown in Figure 3.3a-b.  

 

Figure 3.2 Schematic diagram of the hydrothermal synthesis of 1T-WS2. 
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Figure 3.3 (a) Teflon lined stainless steel autoclave (b) A Barnstead Thermolyne furnace 

1400.  

3.2.3 Preparation of 1T-WS2 Dispersion 

In the beginning 2 mg, 4 mg, and 8 mg of WS2 powder were weighed using a 

balance. Then different concentrations of WS2 dispersion such as 0.5 mg mL-1, 1 mg mL-

1, 2 mg mL-1 were prepared by dissolving  2 mg, 4 mg, 8 mg of WS2 into 4 mL DMF. The 

resulting solutions were ultrasonically treated at room temperature for 1 hour to obtain a 

homogenous dispersion of WS2. Figure 3.4a shows WS2 powder synthesized using the 

hydrothermal method and Figure 3.4b shows the dispersion of 1 mg mL-1 WS2 in DMF. 

Figure 3.5a and b show an ultrasonic cleaner bought from Kendal corporation. 

(a) (b) 
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Figure 3.4 (a) WS2 powder synthesized using hydrothermal method (b) Dispersion of 1 mg 

mL-1 WS2 in DMF. 

Figure 3.5 (a-b) An ultrasonic cleaner from Kendal corporation. 

3.2.4 Fabrication of the GO-AgNWs Composite Modified Platinum Electrode  

Figure 3.6a shows the as-received platinum electrode. A homogeneous slurry of 

alumina was prepared using three different alumina powders of 1.0 µm, 0.3 µm, and 0.05 

µm size. Then Pt electrode was polished on a microfiber pad using alumina slurries to 

obtain a clean and shiny surface, rinsed with deionized water and ethanol, then dried with 

(b) (a) 

(b) (a) 
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nitrogen. A 5 µL dispersion of GO-AgNWs composite was drop-casted onto the Pt surface 

and dried under an ambient atmosphere (Figure 3.6b). The GO-AgNWs composite 

modified electrode was stored at 4 oC before testing.  

 

Figure 3.6 (a) Platinum electrode (b) Photographs of the as-prepared GO-AgNWs 

composite modified platinum electrode. 

3.2.5 Fabrication of the 1T- WS2 Modified Glassy Carbon Electrode  

A homogenous dispersion of 1T-WS2 into DMF was achieved by ultrasonic 

agitation for 1 h. Before the surface modification, the GCE was cleaned by polishing 

carefully with 1.0 µm, 0.3 µm, and 0.05 µm alumina powder on micro-cloth pads (Figure 

3.7a) until a mirror shiny surface appeared, rinsing with ethanol followed by a deionized 

water rinse. Afterward, the electrode was dried under nitrogen [17]. A 5 µL of 1T-WS2 

dispersion was drop-cast on the surface of the clean GCE by a micropipette and the solvent 

was evaporated at 50oC in a vacuum oven for 30 min to obtain the 1T-WS2 modified GCE. 

Figure 3.7b shows an as prepared 1T-WS2 modified GCE. 

Platinum 

Cu-Cr PTFE 

GO-AgNWs 

(a) (b) 
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Figure 3.7 (a) Electrode polishing kits include alumina powders and microfiber pads  (b) 

As-prepared 1T-WS2 modified GCE. 

3.2.6 Preparation of Electrolytes and Analytes 

The electrochemical measurement for the detection of Hg2+ on GO-AgNWs 

modified electrode was carried out in 0.1 M KCl as the supporting electrolyte. To prepare 

0.1 M KCl electrolyte, 298.2 mg of KCl was dissolved into 40 ml DI water, followed by 

centrifugation for 5 min.  Figure 3.8a shows the prepared 0.1 M KCl electrolyte. To detect 

Hg2+ with 1T-WS2 modified GCE, a 0.1 M acetate buffer solution was prepared by 

dissolving 328.12 mg of sodium acetate into 40 mL of deionized water. A stock solution 

of 0.1 M acetic acid was added into the above-mentioned sodium acetate solution the 

desired pH of the electrolyte was achieved.  A  Fisher science education pH meter was used 

to measure the pH of the electrolyte, while the pH meter was calibrated using standard PBS 

with pH 6.0. Deionized water was used to prepare all solutions unless specified otherwise. 

Figure 3.8b shows the prepared 0.1 M acetate buffer. 

Microfiber 

pads 

Alumina WS2 modified 

GCE 

(a) (b) 
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Figure 3.8 (a) As prepared 0.1 M KCl electrolyte (b) 0.1 M acetate buffer. 

Different concentrations of stock solution of the analytes were prepared using 

equation (1). 

𝑚 = 𝐶𝑉𝑀       (3.1) 

Where m = required mass of analyte (g), C = desired concentration of an analyte (M), V = 

desired final volume (L),  M = formula weight of analyte (g/mol). 

To achieve the desired concentration, the stock solution was diluted using the following 

formula. 

M1V1 = M2V2       (3.2) 

Where, M1 and  V1 represent the molarity and volume of stock solutions, respectively, 

while M2, V2 represents the desired molarity and concentrations, respectively. 

(a) (b) 
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To calculate the molarity of an acid with a given concentration in wt %, the equation (3.3) 

was used.  

[(% x d) / MW] x 10 = Molarity     (3.3) 

where, % = weight % (w/w); d = density (g/mL); MW = Molecular Weight (g/mol). 

3.3 Electrochemical Characterization 

3.3.1 Setup for Electrochemical Measurements 

A three-electrode system comprised of GO-AgNWs composite modified platinum 

as a working electrode, Ag/AgCl (3 M KCl) as a  reference electrode, and platinum wire 

as a counter electrode was used for all electrochemical measurements (Figure 3.9). A 20 

mL electrochemical cell, 0.1 M KCl electrolyte, and different concentrations of Hg2+ were 

used throughout the electrochemical measurements [17].   

For 1T-WS2 modified GCE, the electrochemical experiments were performed on 

the same experimental setup except the working electrode made of 1T-WS2 modified GCE 

and 0.1 M acetate buffer as an electrolyte.  



www.manaraa.com

67 
 

 

 

Figure 3.9 Schematic illustration of a three-electrode electrochemical cell. 

3.3.2 Electrochemical Measurement Procedures 

The electrochemical detection of Hg2+ was performed using SWASV in a three-

electrode system at room temperature. For GO-AgNWs composite electrode, SWASV 

measurements were carried out in the presence of 0.1 M KCl and different concentrations 

of Hg2+ diluted into deionized water. The preconcentration (deposition) of mercury was 

conducted at - 0.4 V for 500 s under stirring. The stirring stopped at the end of the 

deposition time. The square wave voltammetry was recorded between 0 V to + 1.0 V with 

a frequency of 25 Hz, a step increment of 5 mV, and an amplitude of 25 mV [17]. Before 

the next cycle, the electrode was cleaned at + 1.0 V for 200 s to remove the residual Hg 

under stirring condition. A series of SWV scanning was also performed to confirm the 

complete removal of any residual mercury until the stripping peak current disappeared 

[105] [17].  
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Similarly, the 1T-WS2 modified GCE was immersed into a 0.1 M acetate buffer 

solution containing different concentrations of Hg2+ under optimized experimental 

conditions. The preconcentration (deposition) of Hg2+ was conducted at - 0.4 V for 450 s. 

Then the stripping response was obtained using square wave voltammetry from - 0.4 V to 

+ 0.7 V with a frequency of 15 Hz, a step increment of 4 mV, and an amplitude of 25 mV. 

Before the next cycle, the electrode was cleaned at + 0.7 V for 120 s to remove the residual 

Hg under stirring condition [137].  

3.3.3 Cyclic Voltammetry and Electrochemical Impedance Spectroscopy  

CV and EIS were carried out for measuring the electrochemical performance of the 

modified electrodes using a Versa STAT 3 electrochemical potentiostat with a three-

electrode system. For cyclic voltammetry, the applied voltage at the working electrode was 

scanned from - 0.2 V to + 0.6 V at a scan rate of 50 mV/s. Each CV was recorded for at 

least 5 cycles. Figure 3.9 shows the schematic diagram of the electrochemical set up used 

for CV and EIS measurements. The EIS measurements were performed under 10 mV AC 

voltage with a frequency varied from 0.01 Hz and 100 kHz at 0 V of open-circuit voltage. 

3.4 Materials and Device Characterization 

3.4.1 Raman Spectroscopy 

Raman spectrum was obtained using a HORIBA Scientific model LABRAM HR 

800. The Raman spectrum was recorded by exciting a green laser (532.04 nm). Figure 3.10 

shows the schematic diagram of a typical Raman spectrometer while Figure 3.11 shows 

the experimental setup for a LABRAM HR Raman spectrometer. Before measurement, the 
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camera is turned ON along with the white light source. The sample surface is focused by 

moving the horizontal position of the sample stage and vertical movement of the 

microscope and a spot on the sample surface is selected for imaging. To focus the sample, 

an objective lens with three different magnifications such as 10x, 50x, 100x was utilized. 

Two different optical gratings of 300 and 1800 were used along with and 0.2 filters were 

adjusted. Then the camera and white light source are turned OFF. After that, the green laser 

is turned ON and the range of Raman shift wavenumbers from 200 to 2000 cm-1 are selected 

for scanning and the Raman spectrum is recorded under dark to avoid the interference from 

room light.  

 

Figure 3.10 Schematic diagram of a typical Raman spectrometer. 
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Figure 3.11 Experimental setup for a LABRAM HR Raman spectrometer. 

3.4.2 X-ray Diffraction  

To study the structural properties of AgNWs and WS2 samples, a Rigaku SmartLab 

XRD was utilized with Cu Kα radiation at 40 kV and 44 mA. The diffraction angle (2θ) 

was scanned from 5° to 80° with a scan rate of 0.02° per second. Initially, the power button 

of the XRD instrument is turned ON and the X-ray generator tube voltage and current are 

ramped to 40 kV and 44 mA, respectively.  The cavity of the glass sample plate is filled 

with WS2 powder and the sample plate is mounted on the sample holder. For the 

measurement of thin film, a similar procedure was followed except a different optics and 

sample alignment was used. The thin film of AgNWs was prepared by spin coating of 

AgNWs dispersion on a glass substrate at 2000 rpm for 30 s with air drying for 20 min.  

Figure 3.12 shows the experimental set up for a Rigaku Smart Lab X-ray Diffractometer.  
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Figure 3.12 A Rigaku Smart Lab X-ray Diffractometer  

3.4.3 Scanning Electron Microscopy 

A Hitachi S-4700 SEM with EDS was used for the morphology and elemental 

characterization of test samples (Figure 3.13). The morphology of various samples was 

examined through SEM. To fabricate the sample for SEM, initially GO was spin-coated on 

a clean silicon wafer at 2000 rpm for 30 s and dried under air for 20 min. Similarly, AgNWs 

and GO-AgNWs composite dispersions were spin-coated on a silicon wafer and air-dried. 

To prepare the powder sample of 1T-WS2, a very tiny amount of WS2 powder was put on 

carbon tape and the excess amount was blown away with nitrogen.  A 10 nm layer of gold 

was sputtered on top of GO, AgNWs and GO-AgNWs film. A high voltage of 5 kV, 10 

kV, and 20 kV with a filament current of 134 mA was used for SEM imaging. Different 

magnifications of 5.0 k, 10.0 k, 25.0 k, 50.0 k were used for clear observation of the 

morphology. For EDS measurement, the same samples were used. The elemental mapping 
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was recorded using Aztec software (Oxford Instruments). In addition, the EDS spectrum 

shows the atomic percentage and weight percentage of each element. 

 

Figure 3.13 Hitachi S-4700 scanning electron microscope. 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Graphene Oxide-Silver Nanowires Composite Based Electrochemical Sensor for Hg2+ 

Detection 

4.1.1 Sensing Mechanism of Hg2+ and Role of AgNWs 

Figure 4.1 illustrates the steps in fabricating the electrochemical sensor and sensing 

mechanism for Hg2+ detection. The carboxylic group (-COOH) in GO can selectively bind 

Hg2+ ions due to its strong affinity towards Hg2+ by forming a stable R-COO-Hg2+-COO-

R linkage [120]. The Hg2+ ions were deposited (preconcentrated) onto the GO-AgNWs 

composite modified Pt electrode by an initially applied negative voltage (- 0.4 V for 500 

s). Square wave voltammetry was carried out subsequently to oxidize (anodic stripping) 

the absorbed mercury [17]. The resulting current signal shows a peak which is proportional 

to the concentration of mercury ions. The peak potential is unique for mercury ions. The 

combination of peak potential and peak intensitiy are used to determine target mercury ions 

in water. 
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Figure 4.1 Sensing mechanism of GO-AgNWs composite modified electrochemical sensor 

for Hg2+ detection. 

It is essential to get fast electron transport between the Pt electrode and Hg2+ to 

improve the sensitivity of electrochemical sensors. In this work, AgNWs have been 

employed to increase the conductivity of GO by making conduction pathways between GO 

sheets and Pt electrode. This phenomenon has been illustrated in Figure 4.2. Initially, the 

Hg2+ ions were deposited on the surface of GO by an initially applied negative voltage (-

0.4V for 500s) and the negatively charged carboxylic group (-COOH) on GO.  The AgNWs 

accelerate the conduction of necessary electrons for the deposition (reduction reaction) of 

Hg2+ ion.  After that, the stripping of the adsorbed mercury was performed by square wave 

voltammetry where the AgNWs provide faster transport of released electrons from GO to 

the Pt electrode (shown by red arrows). The rapid charge (electron) transfer during the 

deposition and stripping of Hg2+ through AgNWs helps to achieve high sensitivity and 

lower LOD [17]. 
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Figure 4.2 Electron transfer phenomenon through AgNWs from GO to Pt electrode during 

the deposition and stripping of Hg2+. 

4.1.2 Morphological and Structural Characteristics 

The morphology of the GO and silver nanowires and their composite were analyzed 

through SEM. Figure 4.3 shows a low magnification (5.00 kx) SEM image of AgNWs, 

where AgNWs are overlapped each other and few of them are aggregated. Figure 4.4a-b 

shows high magnification images (25.00 kx and 50.00 kx) of AgNWs. It can be observed 

that the AgNWs are dispersed and separated from each other with a uniform diameter and 

length. The diameter and length of AgNWs are approximately 50-100 nm and 8-15 µm, 

respectively [17]. 
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Figure 4.3 SEM images of AgNWs at low magnification (5.00 kx). 

Figure 4.4 SEM images of AgNWs at high magnification (a) 25.00 kx (b) 50.00 kx. 

The agglomeration of graphene sheets was observed on the SEM image of GO. A 

few thin wrinkles on the surface of GO sheets were also observed and shown in Figure 4.5. 

The reason for the can be ascribed to The π-π interactions between individual layers of 

graphene sheets can cause the agglomeration of GO [17]. The incorporation of AgNWs on 

(b) 
(a) 



www.manaraa.com

77 
 

 

GO sheets produces a hybrid network which was observed in Figure 4.6. Here, AgNWs 

acts as a connecting bridge between GO sheets by forming a hybrid network and reduces 

the aggregation of GO sheets. The reason behind this phenomenon can be the electrostatic 

interaction between negatively charged GO sheets and positively charged AgNWs [17]. 

 

Figure 4.5 SEM images of GO sheets showing an agglomeration of nanosheets. 

 

Figure 4.6 SEM images of a hybrid network of GO-AgNWs composite. 

GO sheets  

AgNWs 

GO 
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The elemental mapping of GO-AgNWs composite was investigated by conducting 

energy-dispersive X-ray spectroscopy (EDS). Figure 4.7b-d shows the corresponding 

mapping of GO-AgNWs composite. Homogenous distribution of C and O were observed 

on elemental mapping with Ag was distributed on nanowires that represents the formation 

of the composites. The EDS spectrum of GO-AgNWs composite was shown in Figure 4.8. 

It was found that the weight percentage of C, O, and Ag in the GO-AgNWs composites 

were 80.4%, 9.1%, and 10.5%, respectively, which represents the purity of GO-AgNWs 

composites [17].  

 

 

Figure 4.7 (a) SEM image of the GO-AgNWs composite and corresponding quantitative 

EDS element mapping of (b) C (c) O and (d) Ag.  

(b) (a) 

GO  

sheets 

AgNW 

(c) (d) 
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Figure 4.8 The EDS spectrum of the GO-AgNWs composite deposited on Si substrate. 

Figure 4.9a-b shows low magnification and high magnification TEM images of GO 

sheets. Single-layer or few layers of exfoliated graphene sheets can be observed on the 

TEM images of GO. The observed edges on the GO sheets demonstrate the flexible and 

ultra-thin nature of graphene sheets. The light-colored and homogenous areas on GO sheets 

indicate the single-layer graphene sheet, while the relatively dark areas on GO sheets 

indicate the multiple graphene sheets due to the agglomeration [169, 170]. Figure 4.9 c-d 

shows the low magnification and high magnification TEM images of the GO-AgNWs 

composite. An overlapping of AgNWs on GO sheets was observed which formed a hybrid 

network of GO-AgNWs and AgNWs may provide conducting path for electrons through 

the GO sheets [17]. 

Element        Wt% 

     C            80.4 

     O               9.1 

     Ag             10.5 
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Figure 4.9 TEM image of the GO (a) low magnification image (b) high magnification 

image (c) Low magnification and (d) high magnification images of GO-AgNWs 

composite.  

The interaction between GO and AgNWs was explained by the zeta potential 

measurement. Zeta potential measures the surface charge of nanoparticles in the colloidal 

dispersion. The value of zeta potential varies from + 100 mV to - 100 mV. A negative zeta 

potential implies negatively charged particles and a positive zeta potential implies 

positively charged particles. The stability of a colloidal solution can be estimated from the 

magnitude of the zeta potential [171] [17].  

(a) Graphene oxide   (b) Graphene oxide 

Graphene  

sheets 

(c)  

 
(d)  

 

AgNWs 
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GO sheets become negatively charged due to the oxygen-containing functional 

groups including carboxyl (-COOH) and hydroxyl (-OH). This is supported by the zeta 

potential measurement of - 26.39 mV (Figure 4.10a) which represents the negatively 

charged GO sheets. On the other hand, the zeta potential for AgNWs was found as + 0.64 

mV (Figure 4.10b), which represents the positively charged AgNWs. An electrostatic 

interaction will occur between negatively charged GO sheets and the positively charged 

AgNWs, which results in the formation of a stable colloidal dispersion of GO-AgNWs 

composite [172] [17].  
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Figure 4.10 The zeta potentials of (a) GO and (b) Ag NWs dispersions in deionized water.  

The structural characterization of GO, AgNW, and  GO-AgNWs composite was 

carried out by performing Raman spectroscopy shown in Figure 4.11. Two characteristic 

peaks were observed on the Raman spectra of GO which are corresponding to the D band 

and G band, respectively. The D bands at 1343.36 cm-1 and 1567.26 cm-1 can be attributed 

to the sp3 hybridized carbon and first-order scattering of the E2g phonon of the sp2 carbon 

lattice, respectively [115, 162, 163]. A prominent peak for AgNWs was observed at 987.63 
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cm-1. The observation of all the corresponding peaks on the Raman spectra for GO and 

AgNWs confirms the successful formation of GO-AgNWs composite [17]. 
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Figure 4.11 Raman spectra of GO, AgNW, and  GO-AgNWs composite.  

X-ray diffraction (XRD) was performed to analyze the crystal structure with a thin 

film of AgNWs deposited on a glass slide. The corresponding XRD for AgNWs was shown 

in Figure 4.12. Two characteristics diffraction peaks observed at 38.2 and 44.4 confirms 

the formation of AgNWs and can be ascribed to the (111) and (200) planes of face-centered 

cubic silver, respectively, which is supported by previous reports [173, 174] [17]. 
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Figure 4.12 XRD patterns of AgNWs. 

4.1.3 Electrochemical Characterization of Different Electrodes 

The electron transfer properties of GO, AgNW, and GO-AgNWs composite 

modified Pt electrodes were studied by EIS. Figure 4.13 shows the EIS results for GO, 

AgNW, and GO-AgNWs composite modified Pt electrodes. It can be seen that Nyquist 

plots contained a semicircle at higher frequencies corresponding to the electron-transfer-

limited process and a straight line at lower frequency indicating the diffusion-limited 

process [153]. The diameter of the semicircle represents the charge transfer resistance (Rct) 

of the electrode-electrolyte interface. The semicircle for GO-AgNWs composite modified 

Pt electrode (curve iii) exhibited a Rct value of 460.3 Ω, which is much lower than the GO 

electrode only with ~ 812.6 Ω (curve i). This implies that the presence of AgNW in GO-
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AgNWs composite enables the enhancement of electron transfer kinetics which is expected 

to improve sensor response. The AgNWs modified Pt electrode (curve ii) had a Rct value 

of 396.3 Ω. 
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Figure 4.13 Nyquist plots for different electrodes in 5 mM K3Fe(CN)6 aqueous solution 

containing 0.1 M KCl (i) GO modified Pt, (ii) AgNWs modified Pt, and (iii) GO-AgNWs 

composite modified Pt electrode. The inset is the equivalent circuit used to model 

impedance data. 

Figure 4.14 reveals the cyclic voltammograms of different modified electrodes in 

5.0 mM K3[Fe(CN)6] containing 0.1 M KCl solution. On bare GO, a pair of weak redox 

peaks (10µA) was observed, indicating the sluggish electron transfer rate at the electrode-

electrolyte interface [175]. This can be attributed to the low conductivity of GO due to the 

presence of different oxygen-containing functional groups which block the diffusion of 

Fe(CN)6
3-/4- to the electrode surface and hinder the electron and mass transfer [7]. The 
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AgNWs modified electrode showed the highest peak current of around 31 µA, which can 

be attributed to the high conductivity of AgNWs. The anodic and cathodic peak current of 

about 22 µA for the GO-AgNWs composite modified Pt electrode was higher than GO 

only modified electrode and less than AgNWs modified electrode [17]. AgNWs may 

provide the necessary conduction pathways on the electrode surface, accelerating the 

electron transfer process [17]. 
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Figure 4.14 CV of different modified electrodes in 5.0 mM K3[Fe(CN)6] solution 

containing 0.1 M KCl.  

Figure 4.15 shows the square wave voltammetry response for GO, AgNWs, and 

GO-AgNWs composite modified Pt electrodes. There was no stripping peak current in the 

AgNWs modified Pt electrode. A small stripping peak at around + 0.16 V was observed 

for the GO modified Pt electrode because the carboxylic group (-COOH) in GO can 

selectively bind Hg2+ ions as R-COO-Hg2+-COO-R [113].  The stripping peak current of 
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the GO-AgNWs composite modified Pt electrode was enhanced nearly 3.5-fold (about 60 

µA) of that of the GO modified Pt electrode, indicating the synergistic effect of AgNWs 

and GO [17].  
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Figure 4.15 SWASV responses for Hg2+ determination at GO, AgNWs, and GO-AgNWs 

modified Pt electrodes.  

4.1.4 Optimization of Experimental Conditions 

To get a high performance stripping analysis of Hg2+, the experimental parameters 

including deposition potential and time were optimized. Figure 4.16 showed the influence 

of deposition potential on the stripping peak current responses for Hg2+. Starting from - 0.1 

V vs Ag/AgCl, the stripping peak current showed a significant increase as the deposition 

potential decreased to -0.40 V. The maximum stripping peak current was observed at -0.40 

V, indicating the most reduction of Hg2+.  However, the stripping peak current was reduced 
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when the deposition potentials were more negative than - 0.40 V. This phenomenon can be 

attributed to the increase of hydrogen evolution at more negative potentials [176]. 

Therefore, a deposition potential of - 0.40 V was chosen as optimum for Hg2+ [17].  
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Figure 4.16 The effect of deposition potential on the stripping peak current for 1µM Hg2+ 

at GO-AgNWs composite modified Pt electrode.  

The accumulation of metal ions onto the electrode surface is affected by the amount 

of deposition time, which can further affect the stripping peak currents for the detection of 

Hg2+. The effect of deposition time in the range of 50-700 s on the stripping peak current 

responses for Hg2+ was studied. Figure 4.17 depicts the stripping peak currents of Hg2+ as 

a function of deposition time at - 0.40 V for the GO-AgNWs composites modified Pt 

electrode. The stripping peak current increased rapidly during the deposition time from the 

30 s to the 200 s.  After that, the stripping peak current increased gradually from 300 s to 

500 s until it reaches steady. At deposition time greater than 500 s, the stripping peak 
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current became saturated, which was probably due to saturation of available active sites for 

the Hg2+ deposition on the GO-AgNWs composite modified Pt electrode surface. 

Therefore, the optimized deposition time of 500 s was chosen for all the experiments [17]. 
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Figure 4.17 The effect of deposition time on the stripping peak current for 1µM Hg2+ at 

GO-AgNWs composite modified Pt electrode. 

The effect of different weight ratios of GO to AgNWs in the composite on sensing 

performance of detecting Hg2+ is shown in Figure 4.18. The peak current towards 50 nM 

Hg2+ was maximum (~59 µA) for the optimized weight ratio of 1 (GO:AgNW = 1:1). It 

can be attributed to the formation of a hybrid network between AgNWs and graphene 

sheets, which is also supported by SEM and TEM.  On the other hand, the peak current 

significantly decreased to ~ 45 µA for the weight ratio of 0.5 (GO: AgNWs = 1:2). The 

associated reason may be the increase of inter-nanowire junction resistance between 
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AgNWs due to the aggregation. When the weight ratio was increased to 2 (GO: AgNWs = 

1:0.5), the peak current of ~52 µA was obtained which is attributed to the lack of sufficient 

electron conduction pathways. Therefore, the weight ratio of 1 was found to be optimum 

[17]. 
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Figure 4.18 SWASV responses for Hg2+ determination at three different weight ratios of 

GO-AgNWs composite modified Pt electrodes.  

4.1.5 Detection of Hg2+ Using GO-AgNWs Composite Modified Electrodes 

Figure 4.19a illustrates the SWASV responses of the GO-AgNWs composite 

modified Pt electrode at various Hg2+ concentrations in 0.1 M KCl under the optimized 

deposition potential of - 0.4 V and time at 500 s. The stripping peak currents increased with 

the increase of Hg2+ concentration. The peak current vs Hg2+ concentration followed a 

linear relationship over the range 1.0-70 nM with a correlation coefficient of 0.9947 (Figure 
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4.19b). The sensitivity of the sensor was ~ 0.29 µA/nM according to the slope of the linear 

curve. The detection limit (3σ/s, where σ and s are standard deviation and sensitivity, 

respectively) of the GO-AgNWs composite modified Pt toward Hg2+ was calculated to be 

~ 0.1 nM, which is very well below the World Health Organization defined limit in 

drinking water [17]. 
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Figure 4.19 (a) SWASV response of the GO-AgNWs composite modified Pt electrode for 

Hg2+ with different concentrations (b) The plot of the stripping peak current vs Hg2+ 
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concentration. The error bars represent the standard deviation for the mean of three 

replicate tests.  

4.1.6 Selectivity, Repeatability, Reproducibility, and Stability 

The possible interferences arising from various heavy metal ions including Pb2+, 

Cd2+, Cu2+, Na+, and Ag+  were studied under the optimum deposition potential and time 

to evaluate the selectivity of the GO-AgNWs composite modified Pt sensor. Figure 4.20 

displays the stripping response of the Hg2+ sensor in the presence of a 10-fold concentration 

of each interfering agent in the solution for the target analyte. It was observed that the 

stripping peak current for 50 nM Hg2+ was almost the same, indicating that these metal 

ions had no significant interference effect on the detection of Hg2+. It is well known that 

many metal ions can complex with the carboxylic group (-COOH). When two metal ions, 

both having affinity to -COOH group, the metal ion having higher reduction potential will 

be preferably reduced on the surface of GO by the -COOH group [81]. Thus, Hg2+ with its 

higher standard reduction potential (+ 0.85 V) shows more tendency to reduce over 

interfering Pb2+ (- 0.13 V), Cd2+ (- 0.40 V), Cu2+ (+ 0.34V), Na+ (- 2.71 V), and Ag+ (+ 

0.80 V) [81]. Hence, the interfering ions will find it more difficult to bond with -COOH 

group and fewer of these ions will be adsorbed. This implies that Hg2+ will be easily 

adsorbed and reduced by -COOH of GO in the presence of interfering ions [17]. Since the 

standard reduction potential of Hg2+ (+ 0.85 V) is close to that of Ag+ (+ 0.80 V), a very 

small interference from Ag+ ion on the response of Hg2++Ag+ was observed. SWASV 

response of the GO-AgNWs composite modified Pt electrode for Hg2+, Ag+, and Hg2+/Ag+ 

mixture are shown in Figure 4.21. The selectivity of the sensor was tested for different 

metal ions shown in Figure 4.22. As observed, the sensor did not show obvious responses 
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to the interfering species studied that can be attributed to the strong affinity of -COOH 

toward Hg2+.These results indicate the high selectivity of the sensor to Hg2+.  
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Figure 4.20 Interference effects of different metal ions on the stripping signals of Hg2+ at 

GO-AgNWs composite modified Pt electrode (50.0 nM Hg2+ and 500 nM each for Pb2+, 

Cd2+, Cu2+, and Na+). The error bars represent the standard deviation for the mean of three 

replicate tests.  
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Figure 4.21 The SWASV response of the GO-AgNWs composite modified Pt electrode for 

Hg2+, Ag+, and Hg2+/Ag+ mixture.  
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Figure 4.22 Selectivity test of GO-AgNWs composite modified Pt electrode against 

different metal ions. The concentration of Hg2+ was 50 nM and the others were 500 nM. 

The error bars represent the standard deviation for the mean of three replicate tests.  

Repeatability of the sensor was studied after ten replicate tests for 10 nM Hg2+ under 

the optimum deposition potential and time with a single GO-AgNWs composite modified 

Pt sensor. As seen in Figure 4.23, the obtained stripping peak current towards Hg2+ for 

every test was almost identical except for a slight upward drift in the current. The reason 

for the slight drift may be the same sensor surface was not retained after stripping and 

deposition. In addition, different experimental conditions such as temperature, vibration, 

etc., may cause drift. However, the low Relative Standard Deviation (RSD) of peak current 

(3.01%) demonstrates the good repeatability of the sensor [17].  
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Figure 4.23 Repeatability study of GO-AgNWs composite modified Pt sensor in 0.1 M 

KCl containing 10 nM Hg2+ under optimum deposition potential and time. Data are 

obtained from every SWASV response. 

The reproducibility of the GO-AgNWs composite modified Pt sensor was also 

tested with three different sensors prepared independently by the same procedure. Under 

the optimum deposition potential and time, the sensors were employed to detect 10 nM 

Hg2+ using SWASV. Figure 4.24 represents the SWASV response of the sensors, where 

the inset shows a histogram plot for peak current to different sensors tested. Three replicate 

tests were performed for each sensor. The low RSD of peak current (2.0%) demonstrates 

the good reproducibility of the sensor. The good repeatability and reproducibility of the 

GO-AgNWs composite modified Pt sensor make it promising for electrochemical detection 

of Hg2+ [17]. 
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Figure 4.24 Reproducibility test carried out at 10 nM Hg2+ for three GO-AgNWs composite 

modified sensors. The inset shows a histogram plot for peak current for the three sensors. 

Error bars are obtained from three replicate tests.  

To study the short-term stability of the GO-AgNWs composite modified Pt 

electrode, CV was performed over 10 cycles. Figure 4.25 shows the CV curves of the 1st, 

5th, and 10th cycles. The overlapping of the three CV curves indicates that the GO-AgNWs 

composite modified Pt electrode shows good short-term stability. No depletion or falling-

off the GO-AgNWs composite modified electrode was observed as is evident in Figure 

4.26, which shows the photographs of the electrode after Hg2+ detection for 10 min as well 

as 20 min. This confirms that the GO-AgNWs composite is very stable with excellent 

adhesion property during the electrochemical measurement for Hg2+ detection [17]. 
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Figure 4.25 The CV curves showing the stability of the fabricated GO-AgNWs composite 

modified Pt electrode.  

Figure 4.26 Photographs of the GO-AgNWs composite modified Pt electrode (a) as-

prepared (before electrochemical detection) (b) after Hg2+ detection for 10 min (c) after 

Hg2+ detection for 20 min.  

4.1.7 Analysis of Real Sample 

The feasibility of the GO-AgNWs composite modified Pt sensor for real sample 

analysis was evaluated by determining Hg2+ in tap water. Tap water was collected from 

Daktronics Engineering Hall, South Dakota State University, SD, USA. Tap water was 

diluted with 0.1M KCl in a ratio of 1:9, without any further sample treatment [177]. The 

(a) as prepared  

GO-AgNWs GO-AgNWs 

(c) after Hg2+ detection for 

20 min 

GO-AgNWs 

(b) after Hg2+ detection for  

10 min 
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tap water samples were spiked with different known concentrations of Hg2+ and then 

analyzed with SWASV. No response of Hg2+ was found in tap water without spiking which 

indicated that the concentration of the target Hg2+ was well below the detection limit or no 

target Hg2+ existed in the tap water. From Table 4.1, the high recovery percentage suggests 

that the GO-AgNWs composite modified Pt sensor has an excellent capability for accurate 

detection of Hg2+ in tap water [17].  

Table 4.1 Determination of Hg2+ in real water samples using GO-AgNWs composite 

modified Pt sensor (n = 3).  

Sample 

Concentration of Hg2+ 

Recovery (%) 

Add (nM) Found (nM) 

Tap water 1 1.0 0.9 90.0 

Tap water 2 10.0 8.7 87.0 

Tap water 3 70.0 69.0 98.6 

Comparison of sensing performance among different electrochemical Hg2+ sensors 

in terms of LOD and LDR are summarized in Table 4.2, demonstrating that the GO-

AgNWs composite modified Pt sensor is a promising candidate for ultrasensitive detection 

of Hg2+. Based on different methods including electrochemical, fluorometric, luminescent, 
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etc., the GO-AgNWs composite modified Pt sensor showed lower LOD compared to 

previously reported works [33, 34, 82, 115, 126, 177, 178], where the lowest reported LOD 

was  0.000001 nM [81]. The GO-AgNWs composite modified Pt sensor demonstrated 

higher LDR than these previous works [113, 116, 127, 178, 179]. 

The GO-AgNWs composite modified Pt sensor exhibited better LOD and LDR than 

other reports on graphene nanocomposites[180, 181] and nanoporous AuNPs [178]. The 

reported LODs in some previous works [33, 126, 177] are above the safety limit of Hg2+ 

in drinking water (5 nM) defined by the WHO, while the GO-AgNWs composite modified 

Pt sensor met this safety limit. Some reports including DNA-MoS2/AuNPs [130], DNA-

rGO [182], Oligonucleotide-WS2 nanosheet [127], GQD-AuNPs/GCE [113], AgNPs/GCE 

[179], AuNPs-rGO [116] had lower and comparable LODs but lower LDRs. The following 

works L-Cys-rGO/GCE [115], DNA-WS2 nanosheet [82], Graphene Aerogel-MOF [34] 

met the safety limit with high LDRs, however, had higher LODs than our work. Only a 

few reports including MoS2/GCE [81], N-doped rGO/MnO2/GCE [119] had better LODs 

and LDRs than our work. Further, the MoS2/GCE [81] showed the LODs of 0.000001 nM, 

however, this LOD value is far away from their achieved LDRs. The reported LDR for 

Au/Ag/Au/CS–GO [128] is above the safety limit of Hg2+ in drinking water [17].  

Table 4.2 Comparison of sensing performance among different electrochemical Hg2+ 

sensors. 

Modifications LOD 

(nM) 

LDR 

(nM) 

Method References 
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GO-AgNWs/Pt 0.10 1-70 Electrochemical This work 

Nanoporus 

AuNPs/ITO 

0.15  5-50 Electrochemical [178] 

rGO-Au/CPE 2.04 5-40 Electrochemical [181] 

MnFe2O4-

Cysteine/GCE 

208 1400-

3000 

Electrochemical [177] 

AgNPs/GCE 0.028 0.1-10 Electrochemical [179] 

AuNPs-rGO 0.0075 0.05-5 Electrochemical [116] 

L-Cys-rGO/GCE 4.958 0-1600 Electrochemical [115] 

DNA-WS2 

nanosheet 

3.3 6-650 Fluorometric [82] 

Graphene Aerogel-

MOF 

2 5-3000 Electrochemical [34] 

DNA-MoS2/AuNPs 0.1 0.1-10 FET  [130] 

DNA-rGO 0.1 0.1-10 Electrochemiluminescence [182] 
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GO: graphene oxide; AuNPs: gold nanoparticles; ITO: indium tin oxide; CPE: carbon-

paste electrode; AgNPs: silver nanoparticles; GCE: glassy carbon electrode; L-Cys: L-

cysteine; rGO: reduced graphene oxide; MoS2: molybdenum disulfide; WS2: tungsten 

rGO-AgNPs 20 100-

10,0000  

UV-vis absorption 

spectroscopy 

[126] 

MoS2/GCE 0.000001 0.1-

20,000 

Electrochemical [81] 

Oligonucleotide-

WS2 nanosheet 

0.10 0.5-20 Fluorometric [127] 

GO-DNA 0.356 0-0.05 Fluorometric [180] 

GQD-AuNPs/GCE 0.02 0-1 Electrochemical [113] 

CNFs/AuNPs 30 100-1200 Electrochemical [33] 

Au/Ag/Au/CS–GO - 500-

25,000  

Surface plasmon 

resonance 

[128] 

N-doped 

rGO/MnO2/GCE 

0.0414 10-200 Electrochemical [119] 
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disulfide; GQD: graphene quantum dot; CNFs: carbon nanofibers; CS: chitosan; AgNW: 

silver nanowire; MOF: metal-organic framework; FET: field-effect transistor; 

4.2 1T-WS2 Microflower Based Electrochemical Sensor for Hg2+ Detection 

4.2.1 Structural and Morphological Characteristics 

The crystal structure of the 1T-WS2 was investigated by XRD analysis. Figure 4.27 

shows the XRD pattern for the as-prepared 1T-WS2. In contrast to the (002) characteristic 

peak for bulk 2H-WS2 at 14.36°, the XRD patterns showed a new (002)new characteristic 

peak at 9.40°. A second third order diffraction peak (004)new and (006)new peaks in the range 

of 16°-30° were observed, which are consistent with that of previous reports [85, 137, 183]. 
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Figure 4.27 The XRD patterns for hexagonal 1T-WS2 in contrast with the peak lines of 

bulk 2H-WS2 from the Powder Diffraction File (PDF) card. 

The Raman spectrum of the 2H-WS2 and 1T-WS2 structure is shown in Figure 4.28. 

Two prominent peaks observed at 356.72 cm-1 and 400.43 cm-1 can be attributed to the in-
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plane (E2g
1 ) and out-of-plane (A1g) modes of the 2H-WS2 [85]. On the other hand, several 

new sharp peaks observed at 132.24 cm-1, 186.42 cm-1, 261.82 cm-1, and 325.13 cm-1 

equivalents to J1, J2, Ag, and J3 peaks, respectively, confirms the formation of 1T-WS2 [85, 

183, 184]. The appearance of these new peaks in the low-frequency region can be ascribed 

to the presence of a zigzag-chain superlattice [85]. The absence of the characteristic peak 

for (E2g
1 ) mode in the Raman spectrum of 1T-WS2 reveals the formation of 1T phase 

dominated WS2 which is well supported by the literature [184]. 

100 150 200 250 300 350 400 450

 J
3

A
1g

A
1g

E
1

2g

A
g

J
2

 1T-WS
2

In
te

n
si

ty
 (

a
.u

.)

Raman Shift (cm
-1
) 

J
1

 

 2H-WS
2

 

Figure 4.28 Raman spectra of 2H-WS2 and 1T-WS2 sample. 

Figure 4.29a-b shows the FESEM image of the as-synthesized 1T-WS2 

microflowers with the magnified view shown in Figure 4.29c. These images show the 

formation of uniform flower-like WS2 nanostructures with a diameter from 3 to 5 µm. Each 

microflower is composed of hundreds of self-assembled curved WS2 nanopetals or 
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nanosheets which are tens of nanometers in thickness (Figure 4.29c). Moreover, these 

nanopetals can form relatively open and porous nanostructures which may provide 

enhanced loading and rapid diffusion opportunity for Hg2+ ions [137]. 

Figure 4.29 (a-b) FESEM images of 1T-WS2 microflowers (c) high magnification image 

of WS2 microflowers. 

The morphology and microstructure of 1T-WS2 were analyzed by TEM. The TEM 

images (Figure 4.30a-b) further confirmed the flower shape of 1T-WS2 and showed 

obvious ripples and corrugations indicating the flexible and ultrathin nature of the WS2 

microflowers. The light-colored and homogenous areas can be attributed to the regions of 

(a) (b) 

(c) 
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stacking single layer or few layers WS2 nanosheets [185]. The less transparent regions are 

stacking of the multiple WS2 nanosheets. Figure 4.30c-d shows the high-resolution TEM 

images taken from the edge of the WS2 microflower. It can be observed that the 

microflowers have a layered structure with an interlayer distance of ~ 0.82 nm (Figure 

4.30d), corresponding to the (002)new plane for 1T-WS2 [137].  

 

Figure 4.30 (a-b) TEM images of 1T-WS2 microflowers (c-d) high magnification images 

of WS2 microflowers. 

The elemental composition of the 1T-WS2 powder was analyzed by EDS. Figure 

4.31 shows the elemental mapping of tungsten (W) and sulfur (S) together. Two main 

elements of W and S were observed in the samples, indicating a high purification of the 

synthesized 1T-WS2. The weight percentage of W and S in the 1T-WS2 was 71.1% and 

28.9%, while the atomic percentage of that was 30.1% and 69.9%, respectively [137].  

(c) 

(b) (a) 

(d) 
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Figure 4.31 EDS spectrum of 1T-WS2. 

Based on the obtained experimental results and the previously reported synthesis 

techniques, a formation mechanism for flower-like WS2 has been proposed which involves 

a three-stage growth process including fast nucleation, aggregation of nanosheets, and self-

assembly of flower-like structure. A schematic diagram is given in Figure 4.32 to 

demonstrate the formation mechanism of flower-shaped WS2. Here, (NH4)6H2W12O40. 

xH2O and CSN2H4 were selected as the source for tungsten and sulfur, respectively. During 

the whole process, thiourea (C2H2O4. 2H2O) will act as a nucleation catalyst [183]. In the 

first stage, more H2S would be produced from the hydrolysis of thiourea (equation 4.1) and 

more WS2 nuclei could be formed through subsequent chemical reactions (equation 4.2-

4.4). Under hydrothermal treatment, the WS2 nuclei would aggregate to form small WS2 

nanosheets based on their favorable crystal growth. Finally, the thin WS2 nanosheets would 

be self-assembled and corrugated into flower shape due to the reduced surface energy 

[186]. According to the previous work, the formation of flower shape WS2 involves the 

following suggested chemical reactions:[183, 186-188] [137] 

CSN2H4 + 2H2O → 2NH3 + CO2 + H2S   (4.1) 

(NH4)6H2W12O40 → 6NH3 + 12WO3 + 4H2O   (4.2) 
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WO3 + 3H2S + H2O → WO2 + SO4
2- + 2H+   (4.3) 

WO2 + 2H2S → WS2 + 2H2O     (4.4) 

 

Figure 4.32 Schematic diagram of the formation mechanism of flower-like WS2 

microstructures. 

4.2.2 Electrochemical Characterization and Optimization of the Experimental Conditions 

The CV results for 1T-WS2 modified GCE, 2H-WS2 modified GCE, and bare GCE 

are shown in Figure 4.33a. The 1T-WS2 modified GCE showed higher anodic and cathodic 

peak currents than 2H-WS2 modified GCE and bare GCE which is ascribed to the excellent 

electronic conductivity of 1T-WS2. Further, the electron transfer properties were studied 

by conducting EIS. The 1T-WS2 modified GCE exhibited a charge transfer resistance (Rct) 

value of 3.12 kΩ which is much lower than the 2H-WS2 modified GCE with 13.75 kΩ and 

bare GCE with 16.09 kΩ (Figure 4.33b). This suggests that the metallic 1T-WS2 can 

enhance the conduction pathway for electron transfer kinetics when anchored on the 

surface of GCE. In contrast, the semiconducting nature of 2H-WS2 causes sluggish electron 

transfer between GCE and redox couple. These EIS results are well agreed by the CV 

observations [137]. 
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Figure 4.33 (a) CV of 1T-WS2 modified GCE, 2H-WS2 modified GCE, and bare GCE (b) 

Nyquist plots of 1T-WS2 modified GCE, 2H-WS2 modified GCE, and bare GCE in 5.0 
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mM K3[Fe(CN)6] solution containing 0.1 M KCl. The inset shows the equivalent circuit 

used to fit the impedance data. 

To achieve the utmost sensing performance for the 1T-WS2 modified GCE, the 

experimental parameters including deposition potential, deposition time, pH of the buffer, 

and concentration of 1T-WS2 were optimized in 0.1 M acetate buffer containing 1 mM 

Hg2+. For the optimization of deposition potential, the effect of various deposition potential 

(from + 0.1 V to - 1.2 V) on stripping peak currents was studied as shown in Figure 4.34a. 

The stripping peak current increased with lowering the potential from + 0.1 V and reached 

a maximum value at - 0.4 V. While further lowering the deposition potential up to -1.2 V, 

the stripping peak current decreased and might be due to hydrogen evolution which hinders 

the deposition of Hg2+ ions onto the electrode surface [105] [137]. 
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Figure 4.34 Optimization of the experimental conditions: Effects of (a) deposition potential 

(b) deposition time on the current responses of the 1T-WS2 modified GCE for 1 mM Hg2+. 

Data were presented as mean ± s.d. (n = 3). 
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The amount of accumulating Hg2+ ions onto the electrode surface is influenced by 

the deposition time, which further affects the stripping peak currents of the Hg2+ detection. 

For the optimization of deposition time, the effect of various deposition time (from 30 s to 

700 s) on the stripping peak currents was studied as shown in Figure 4.34b. Initially, the 

stripping peak currents increased with the deposition time due to the increased amount of  

Hg2+ ions on the electrode surface and remained steady after 450 s. This indicates the 

saturation of available active sites on the 1T-WS2 modified GCE surface after 450 s [34] 

[137]. 

For the optimization of the concentration of 1T-WS2, the effect of various 

concentrations (from 0.5 to 2.0 mg mL-1) on the stripping peak currents for 0.8 µM of Hg2+ 

was studied as shown in Figure 4.35a. With the increase of 1T-WS2 concentration from 0.5 

to 1.0 mg mL-1, higher peak currents were observed which can be attributed to the increase 

in the conductivity of 1T-WS2 leading to a faster electron transfer rate. The maximum value 

of the peak current was obtained at 1.0 mg mL-1. However, a further increase in 

concentration to 2.0 mg mL-1 led to a decrease in the peak current which may be due to a 

higher thickness of 1T-WS2, thus creating an aggregation of 1T-WS2 and impeding the 

electron transfer rate. Therefore, to obtain a highly sensitive response, the optimized 

concentration of 1T-WS2 was found to be 1.0 mg mL-1 [137]. 
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Figure 4.35 (a) SWASV response of the different concentrations of 1T-WS2 modified GCE 

for 0.8 µM Hg2+ (b) Optimization of the experimental conditions: Effects of pH of the 

buffer on the current responses of the 1T-WS2 modified GCE for 1 mM Hg2+. Data were 

presented as mean ± s.d. (n = 3).  

Furthermore, the influence of the pH of the buffer on the stripping response of Hg2+ 

was analyzed in the range of 3.0-6.0 as shown in Figure 4.35b. The maximum stripping 

peak current for Hg2+ was observed at pH 5.0. The lower stripping peak currents at lower 

pH (pH<5) can be attributed to the protonation of sulfur (S2-) groups which weakens the 

absorption ability of Hg2+  on the 1T-WS2 modified GCE [189]. When the pH was further 

increased (pH >5), the stripping peak currents reduced indicating hydrolysis of Hg2+ ions, 

which hinders the deposition of Hg2+ ions on the 1T-WS2 modified GCE [7]. All the 

remaining measurements were performed under the optimized experimental conditions of 

deposition potential (- 0.4 V), deposition time (450 s), pH of the buffer (5.0), and 

concentration of 1T-WS2 (1.0 mg mL-1) unless otherwise stated [137].           

4.2.3 Analytical Performance of the 1T-WS2 Modified Electrodes  
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SWASV response of the 1T-WS2 modified GCE was performed for different 

concentrations of Hg2+. Figures 4.36a-c showed that the stripping responses toward Hg2+ 

increased with an increase in the concentration from 1.0 nM to 1 mM. The peak intensities 

increased linearly with increasing concentration of Hg2+. The well defined and stable 

stripping peaks were observed for Hg2+ at + 0.38 V (Figure 4.36a). Four LDRs were found 

for the sensing of Hg2+ on 1T-WS2 modified GCE. The first LDR was obtained over the 

low concentration range of 1.0 nM-90 nM with a sensitivity of 15.9 µA/µM (inset of Figure 

4.36a). Similarly, the second and third LDRs were found over the moderate concentration 

range of 0.1-0.4 µM and 0.5-1.0 µM with a sensitivity of 2.54 µA/µM and 13.84 µA/µM, 

respectively (inset of Figure 4.36b). The fourth LDR was found over the high concentration 

range of 0.1-1.0 mM with a sensitivity of 0.04646 µA/µM (inset of Figure 4.36c). As 

observed, the sensitivity decreases at moderate and high concentration ranges. At low 

concentrations of Hg2+, many S2- sites are available to interact with Hg2+, leading to higher 

sensitivity than the moderate and high concentrations of Hg2+. However, with increasing 

the concentration of Hg2+, the number of S2- sites for detecting Hg2+ decreases, leading to 

a lower sensitivity at moderate and high concentrations of Hg2+ [190]. The LOD of the 1T-

WS2 modified GCE toward Hg2+ was calculated to be 0.0798 nM or 79.8 pM based on the 

3σ method (where σ is the standard deviation for 10 blank samples), which is very well 

below the recommended guidelines of the WHO and the US EPA for the value of Hg2+ in 

drinking water [137].  
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Figure 4.36 SWASV responses of the 1T-WS2 modified GCE with increasing 

concentrations of Hg2+ in the range of (a) 1.0-90 nM (b) 0.1-0.4 µM and 0.5-1.0 µM (c) 

0.1-1.0 mM. Data are presented as mean ± s.d. (n = 3). 

The LOD and LDR of various modified electrodes for Hg2+ detection are compared 

in Table 4.3. Based on different methods including electrochemical, fluorescence, 

electrochemiluminescence, etc., the 1T-WS2 microflowers modified GCE developed in this 

work showed better LOD and LDR than the previous reports on DNA-WS2 nanosheet [82], 

Oligonucleotide-WS2 [127], DNA-rGO [182], Nanoporous Au-Thymine [178], DNA-

MoS2/AuNPs [130]. Furthermore, the developed sensor showed higher LDR compared to 

these previous works on AgNPs [179], AuNPs-rGO [116], and N-doped rGO/MnO2 [119]. 

In addition, 1T-WS2 microflowers modified GCE exhibited a lower LOD and LDR than 

some of the previous reports on N-doped WS2 nanosheets [133], Graphene Aerogel-MOF 

1.0 mM 

0.1 mM 
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[34], MnFe2O4-Cysteine[177], CNFs/AuNPs [33], where the lowest LOD of 0.000001 nM 

was reported by Aswathi et al [81]. Thus, the above comparisons suggest that the 1T-WS2 

microflowers modified GCE developed in this work exhibit comparable performance 

parameters to the previous reports and the obtained LOD (0.0798 nM) is well below the 

US EPA and the WHO recommended level of Hg2+ in drinking water [137]. 

Table 4.3 Comparison of the sensing performance of various modified electrodes for 

the detection of Hg2+. 

Modifications LOD 

(nM) 

LDR (nM) Method References 

1T-WS2 

nanoflowers 

0.0798 1-1000 nM, 

0.1-1.0 mM 

Electrochemical This work 

Nanoporous Au-

Thymine 

0.15  5-50 Electrochemical [178] 

MnFe2O4-

Cysteine 

208 1400-3000 Electrochemical [177] 

DNA-WS2 

nanosheet 

3.3 6-650 Fluorescence [82] 



www.manaraa.com

115 
 

 

AgNPs 0.028 0.1-10 Electrochemical [179] 

AuNPs-rGO 0.0075 0.05-5 Electrochemical [116] 

Graphene 

Aerogel-MOF 

2.0 5-3000 Electrochemical [34] 

DNA-

MoS2/AuNPs 

0.1 0.1-10 FET  [130] 

MoS2 flakes 0.03 0.03-1000 FET [129] 

MoS2 nanosheets 0.000001 0.1-20,000 Electrochemical [81] 

Oligonucleotide-

WS2 nanosheets 

0.10 0.5-20 Fluorescence [127] 

DNA-rGO 0.10 0.1-10 Electrochemiluminescence [182] 

N-doped 

rGO/MnO2 

0.0414 10-200 Electrochemical [119] 

CNFs/AuNPs 30 100-1200 Electrochemical [33] 
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Abbreviations: WS2: tungsten disulfide; AgNPs: silver nanoparticles; AuNPs: gold 

nanoparticles; rGO: reduced graphene oxide; MOF: metal-organic framework; MoS2: 

molybdenum disulfide; CNFs: carbon nanofibers; FET: field-effect transistor. 

4.2.4 Selectivity, Repeatability, Reproducibility, and Stability 

Several potential heavy metal ions including Cu2+, Fe3+, Ni2+, Pb2+, Cr3+, K+, Na+, 

Ag+, Sn2+, and Cd2+ as interference were tested to demonstrate the selectivity of the 1T-

WS2 modified GCE as shown in Figure 4.37. At 100 μM, the interfering metal ions showed 

significantly poorer stripping response as compared to that for Hg2+. The corresponding 

SWASV responses for interference metal ions showed no obvious peak in the potential 

range of - 1.0 to + 0.7 V (Figure 4.38). These results confirm that the 1T-WS2 modified 

GCE exhibits an excellent selectivity toward Hg2+. This can be attributed to the higher 

standard reduction potential of Hg2+ over other interfering metal ions and strong affinity of 

Hg2+ towards S2-.[81] To further test the cross selectivity of the 1T-WS2 modified electrode, 

Hg2+ and other heavy metal ions were mixed. A similar stripping response was observed 

for the mixture of Hg2+ and other ions that reveals no significant interference from other 

ions. These results verify the cross selectivity of the 1T-WS2 modified electrode. It is 

known that for two metal ions both having affinity to S2-, the metal ion having higher 

reduction potential will get preferably reduced by the S2- on the surface of 1T-WS2 [81]. 

Thus, Hg2+ with its higher standard reduction potential (+ 0.85 V) shows more tendency to 

N-doped WS2 

nanosheets 

20 10-5000 Fluorescence [133] 
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reduce over interfering Cu2+ (+ 0.34 V), Fe3+ (+ 0.77 V), Ni2+ (- 0.25 V), Pb2+ (- 0.13 V), 

Cr3+ (- 0.74 V), K+ (- 2.92 V), Na+ (- 2.71 V), Ag+ (+ 0.80 V), Sn2+ (- 0.14 V), and Cd2+ (- 

0.40 V) [81] [137].  
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Figure 4.37 Electrochemical responses of 1T-WS2 modified GCE to different heavy metal 

ions relative to the signal of Hg2+. The concentration of Hg2+ and the interfering metal ions 

was 100 µM.  
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Figure 4.38 The SWASV response of the 1T-WS2 modified GCE for heavy metal ions 

including Hg2+, Cu2+, Fe3+, Ni2+, Pb2+, Cr3+, K+, Na+, Ag+, Sn2+, Cd2+, and the mixture of 

Hg2+ with other ions. 

Repeatability of the sensor was investigated after six replicated tests for 100 µM 

Hg2+ with a single 1T-WS2 modified GCE. The identical stripping responses toward Hg2+ 

were observed for every test as shown in Figure 4.39.  The low  RSD of 1.46% for the 

responses from the six tests confirms the good repeatability of the sensor. [137].  
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 Figure 4.39 Repeatability of the 1T-WS2 modified GCE for six replicated tests. Data are 

presented as mean ± s.d. (n = 3). 

The reproducibility of the 1T-WS2 modified GCE was also tested by preparing four 

identical 1T-WS2 modified GCEs. The sensors were employed to detect 80 µM Hg2+. 

Figure 4.40 represents the stripping responses for the four 1T-WS2 modified GCEs, where 

the inset shows a histogram plot for peak current for different sensors tested. The low RSD 
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for four electrodes (0.87%) confirms the good reproducibility of the as-fabricated 

electrochemical sensor [137].  
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Figure 4.40 Reproducibility of the 1T-WS2 modified GCE. The inset shows a histogram 

plot for peak current for the four sensors. Data are presented as mean ± s.d. (n = 3).  

Figure 4.41 shows the stability of the 1T-WS2 modified GCE. The stability of the 

1T-WS2 modified GCE was evaluated by measuring the stripping response up to 32 days 

with an interval of three days. Meanwhile, the electrode was stored at room temperature. 

The 1T-WS2 modified GCE showed current response retention of 93.23% on the 20th  day 

and 79.34% on the 32nd  day. This result demonstrates the good stability of the 1T-WS2 

modified GCE. The photographs in Figure 4.42 shows there is no depletion or separation 

of the 1T-WS2 films after 32 days. This confirms that 1T-WS2 shows excellent adhesive 

and stable properties [137].  
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Figure 4.41 Stability of the 1T-WS2 modified GCE in response to 1 mM Hg2+ over 32 days. 

                  

Figure 4.42 Photographs of the 1T-WS2 modified GCE (a) as-prepared (b) after Hg2+ 

detection for 32 days. 

4.2.5 Analysis of Real Sample 

The applicability of the 1T-WS2 modified GCE was evaluated by determining the 

concentration of Hg2+ in real samples including tap water. Tap water was collected from 

(a) as prepared  (b) after Hg2+ detection for 32 days 
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Daktronics Engineering Hall, South Dakota State University, SD, USA. Before detection, 

tap water was diluted with 0.1 M acetate buffer in a volume ratio of 1:9, without any further 

sample treatment [177]. No response of Hg2+ was found in tap water without spiking which 

indicated that the concentration of the target Hg2+ was well below the detection limit or no 

target Hg2+ existed in the tap water. Then, standard solutions of Hg2+ (70 nM, 1.0 µM, and 

100 µM) were spiked into tap water and further analyzed with SWASV. Table 4.4 is a 

summary of the obtained results. The recovery was 96 - 99.6% for Hg2+. The obtained high 

recovery percentage suggests that the 1T-WS2 modified GCE is feasible for accurate 

detection of Hg2+ in tap water [137].  

Table 4.4 Determination of Hg2+ in tap water using 1T-WS2 modified GCE. 

Sample 

Concentration of Hg2+ Recovery (%) = 

found / add × 100 

 Add (µM) Found (µM) 

Tap water 

 

0.0 Not detected - 

0.07  0.068  97.1 

1.0 0.96  96.0 

100.0  99.6 99.6 

 

4.2.6 Sensing Mechanism of Hg2+ and Evidence of WS2-Hg interaction 

Figure 4.43 illustrates the sensing mechanism of 1T-WS2 modified GCE for Hg2+ 

ions. Initially, the Hg2+ ions are strongly adsorbed and deposited onto 1T-WS2 by forming 
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the Hg-S complex as indicated by equations 4.5-4.7 [81]. In this deposition process, Hg2+ 

ions are reduced on the surface of 1T-WS2 where Hg2+ ions act as strong oxidizing agents 

and  S2-  acts as a reducing agent [131]. Here, the metallic 1T-WS2 provides a pathway for 

the conduction of electrons. Fast charge transport through metallic 1T-WS2 facilitates 

achieving high sensitivity, wide LDR, and lower LOD. During stripping, oxidation of 

metallic Hg occurs as indicated in the reversible redox reaction (4.7).  

Hg2+ + 2e-          Hg   (4.5) 

S2- - 2e-          S   (4.6) 

Hg2+ + S2-              Hg – S  (4.7) 

The interaction between S2- of WS2 and Hg2+ was explained by analyzing Raman 

spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Before the analysis, the 

HgCl2 solution was added into WS2 dispersions and dried [137].  

 

Figure 4.43 Schematic diagram of the sensing mechanism of Hg2+ using 1T-WS2. 

The Raman spectra for WS2-Hg and WS2 were measured and shown in Figure 

4.44a. A red shift of A1g mode was observed after the incorporation of Hg in WS2 (inset of 

Figure 4.44a). The S-Hg interactions induced a local strain that caused a 3.22 cm-1 red shift 



www.manaraa.com

123 
 

 

in the A1g mode [81, 191, 192]. Thus, the results suggest an interaction between S2- of WS2 

and Hg2+ [137].  

Further, the FTIR spectra for WS2-Hg and WS2 was recorded in the range of 500 - 

3500 cm-1 and shown in Figure 4.44b. The differences between the two spectra were 

observed in the region of 700-1100 cm-1 (inset of Figure 4.44b). A significant shift of the 

characteristics S-S bond for WS2-Hg was observed at 946.32 cm-1 from 939.23 cm-1 of 

WS2 [188]. The shift of S-S bond is an indication of the electrostatic interaction between 

S2- and Hg2+, which can affect the W-S and S-S bonding strength due to the formation of 

S-Hg covalent bond [81]. Thus, the FTIR spectra reveal S-Hg interaction [137]. 
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Figure 4.44 Experimental results showing S-Hg interaction (a) Raman spectra and (b) FTIR 

spectra of WS2 and WS2-Hg. 
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CHAPTER 5 SUMMARY AND CONCLUSIONS 

5.1 Summary 

Heavy metal contaminants are a threat to public health and other living organisms 

due to their toxicity and nonbiodegradability. The accumulation of a trace amount of heavy 

metals including Hg, Pb, Cd, As, etc., in the human body through drinking water and food 

chain can cause life-threatening diseases including such as arrhythmia, cardiomyopathy, 

kidney and respiratory failure, central nervous defects, pulmonary diseases, etc. Hg is one 

of the harmful pollutants and heavy metals that is produced by the natural, domestic, and 

industrial sources such as pesticides, energy storage, mining, coal combustion, power 

plants, thermometers, and cosmetics. To regulate the heavy metal uptake in our body, the 

WHO and the EPA have defined guideline values of heavy metals in drinking water.  

Various traditional methods have been established for the quantitative detection of 

heavy metals in water and environmental samples. Among them, AAS, fluorescence 

spectroscopy, UV-vis spectrometry, ICP-MS, etc., are widely used for monitoring heavy 

metals. Although these conventional techniques have enabled efficient detection of heavy 

metals, they still suffer from many disadvantages such as high cost, low sensitivity, 

complex operation, bulky instrumentation, slow response, time-consuming, inconvenient 

for on-site testing, lack of portability, need the knowledge of chemistry and expert 

personal. To overcome the limitations of conventional techniques, electrochemical sensors 

have received significant attention in the field of heavy metal sensing due to its simplicity, 

cost-effectiveness, excellent sensitivity, low limit of detection, portability, and on-site 

analysis. 
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The sensing materials play a vital role in the efficient accumulation of target 

analytes as well as the performance of the electrochemical sensors. 2D materials are 

promising for different applications in the field of sensors, transistors, energy storage 

devices due to their intriguing properties. Among them, graphene has become a potential 

candidate for biosensors, electronic sensors, gas sensors, and electrochemical heavy metal 

ion sensors due to unique properties including higher electron mobility, high electrical 

conductivity, good thermal conductivity, large surface area, and excellent electrocatalytic 

activities. The layer structure and high surface area of graphene facilitate physical and 

chemical adsorption of different analytes through van der Waals interaction, electrostatic 

interaction, and covalent bonding. Further, various nanostructure materials including metal 

nanoparticles, metal nanorods, nanowires, metal oxide nanoparticles, conducting 

polymers, etc., have been introduced with graphene to form composites for improving the 

sensing performance due to their synergistic effects. 

GO contains different functional groups on its surface including -COOH and C= O 

group at the edges and -OH and C-O-C on the basal plane. The presence of various oxygen-

containing functional groups makes GO as a promising candidate for electrochemical 

sensing of Hg2+ by immobilizing Hg2+. Recently, graphene or GO-based composites such 

as rGO-AuNPs, ionic liquid functionalized GO, 5-methyl-2-thiouracil (MTU)-AuNPs-GO, 

cysteamine-GO, L-Cysteine-rGO, SnO2-rGO, and graphene quantum dots-AuNPs showed 

promises for electrochemical detection of Hg2+. Unfortunately, most of them suffer from 

lower sensitivity, narrow detection range, and high detection limits. One possible reason is 

the poor conductivity of GO [17].  
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The development of an electrochemical sensor with excellent sensitivity and 

selectivity toward Hg2+ is needed to protect public health. It is essential to get faster 

electron transport between an electrode and the target analyte (Hg2+) to improve the 

sensitivity of electrochemical sensors. AgNWs can provide faster electron transport 

between the electrode and electroactive analytes and hence, can improve the sensitivity of 

electrochemical sensors. With this into consideration, this work presents the incorporation 

of AgNWs to form a composite with GO and enhance the conductivity of GO by providing 

a faster electron transport pathway. The use of GO-AgNWs composite utilizes the 

advantages of the GO (large surface area, binding affinity towards Hg2+) together with 

AgNWs (high conductivity). Here, a simple solution addition method was utilized to 

prepare GO-AgNWs composite. GO-AgNWs composite modified electrochemical sensors 

have been fabricated with a simple drop-cast method. The structure and morphology of 

GO-AgNWs composite were characterized using Raman spectroscopy, XRD, SEM, and 

TEM. The electrochemical characteristics of the GO-AgNWs composite modified 

electrodes were characterized using CV, EIS, and SWASV. Under optimum experimental 

conditions, the resulting sensor could detect Hg2+ with excellent sensitivity of ~ 0.29 

µA/nM. The achieved linear response towards Hg2+ detection was in the range of 1-70 nM. 

Further, the detection limit of the GO-AgNWs composite modified electrode towards Hg2+ 

was ~ 0.1 nM. Therefore, our sensor can detect 5 nM Hg2+ which is the safety limit defined 

by the WHO and even less. The sensor has an excellent selective response to Hg2+ against 

other interfering heavy metal ions such as Pb2+, Cd2+, Cu2+, Sn2+, Ag+, Cr3+, and Na+. The 

sensor exhibits high repeatability and reproducibility. The sensor is employed for the 
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detection of Hg2+ in tap water samples with an outstanding performance, suggesting it is a 

very promising platform for on-site monitoring of Hg2+ in water.  

Inspired by graphene-based electrochemical sensors, 2D TMDs have recently 

attracted much attention because of large specific surface area, excellent electrical 

conductivity, and remarkable catalytic properties. Among them, WS2 is one of the 

emerging TMDs that has two phases with different electronic structures and other 

properties. For instance, WS2 with a 1T phase (octahedral Oh) is metallic, while the 2H 

phase (trigonal prismatic D3h) is semiconducting. High conductivity and presence of sulfur 

groups (S2-) having an affinity toward Hg2+ have made 1T-WS2 a promising material for 

electrochemical sensing of Hg2+. Some studies have also demonstrated the applicability of 

2H-WS2 for Hg2+ detection. Recently, Zuo et al. demonstrated a dual-color fluorescent 

biosensor using 2H-WS2 nanosheets with Hg2+ and Ag+ specific DNA probes. The obtained 

LDRs for Hg2+ and Ag+ were 6.0-650.0 nM and 5.0-1000.0 nM with the LODs of 3.3 nM 

and 1.2 nM, respectively. Li and coworkers demonstrated a fluorescent sensor for Hg2+ 

using 2H-WS2 nanosheets with T7 exonuclease. However, owing to limited fluorescence 

quenching ability of 2H-WS2, these sensors suffer from narrow LDRs and high LODs. WS2 

based electrochemical sensors for Hg2+ are still suffering from low sensitivity, selectivity, 

and wide LDRs. 

This work also focuses on the electrochemical detection of Hg2+ using metallic 1T-

WS2 microflowers. The flower-like WS2 microstructure provides a high electroactive 

surface area for enhanced loading and rapid diffusion opportunity for Hg2+ ions. The 

metallic phase of 1T-WS2 enhances the electrochemical properties by providing a fast-

heterogeneous electron transfer rate. Moreover, the presence of abundant active sites on 
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both edge and basal planes of the 1T-WS2 will further improve the electrocatalytic 

performances. Owing to the high electroactive surface area, good conductivity, fast 

heterogeneous electron transfer rate, and abundant active sites, the exploitation of 1T-WS2 

microflowers for electrochemical sensing of Hg2+ leads to wide LDRs with excellent 

sensitivity and selectivity. 

Here, microflower structured metallic 1T-WS2 was synthesized by a simple 

hydrothermal method and was further explored for Hg2+ detection. 1T-WS2 microflowers 

modified electrochemical sensors have been fabricated with a simple drop-cast method. 

The structure and morphology of 1T-WS2 microflowers were characterized using Raman 

spectroscopy, XRD, SEM, TEM. The electrochemical characteristics of the 1T-WS2 

modified electrodes were characterized using CV, EIS, and SWASV. The sensor showed 

excellent sensitivities of ~ 15.9 µA/µM, 2.54 µA/µM, 13.84 µA/µM, and 0.04646 µA/µM  

for Hg2+ with  LDRs of 1-90 nM, 0.1-0.4 µM, 0.5-1.0 µM, and 0.1-1.0 mM, respectively. 

In addition to this, the LOD of the sensor toward Hg2+ is 0.0798 nM or 79.8 pM, which is 

well below the acceptable limit of Hg2+ in water defined by WHO and EPA. The sensor 

exhibits excellent selectivity for Hg2+ against other heavy metal ions including Cu2+, Fe3+, 

Ni2+, Pb2+, Cr3+, K+, Na+, Ag+, Sn2+, and Cd2+. The thus obtained excellent sensitivity and 

selectivity with wide LDRs can be attributed to the high conductivity, large surface area 

microflower structured 1T-WS2, and the complexation of Hg2+ ions with sulfur (S2-). In 

addition to good repeatability, reproducibility, and stability, this sensor shows the practical 

feasibility of Hg2+ detection in tap water suggesting a promising device for real 

applications.  

5.2 Conclusions 
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In the first project, a GO-AgNWs composite modified high-performance Hg2+ 

sensor was successfully developed. The GO-AgNWs composite greatly facilitates faster 

electron-transfer kinetics and leads to improved sensing of Hg2+. The outcomes reveal that 

the GO-AgNWs composite modified sensor is highly sensitive to Hg2+ in the range of 1 - 

70 nM and the LOD is ~ 0.1 nM. Due to the formation of R-COO-Hg2+-COO-R linkage, 

the sensor showed a strong affinity to Hg2+, while other heavy metal ions had no 

interference. Moreover, the sensor exhibited excellent repeatability, reproducibility, and 

applicability for the determination of Hg2+ in tap water.  

In the second project, 1T-WS2 microflowers were hydrothermally synthesized and 

XRD, Raman spectroscopy, SEM, and TEM were utilized to verify its structural and 

morphological characteristics. Electrochemical characterization using CV and EIS 

exhibited that the 1T-WS2 modified GCE greatly facilitated faster electron transport 

because of the metallic phase of WS2. Stripping responses under the optimized 

experimental conditions demonstrated that the as-prepared 1T-WS2 modified GCE can be 

successfully employed to detect Hg2+ with ultra-trace sensitivity and wide LDRs. The 

estimated LOD for Hg2+ was 79.8 pM which is well below the acceptable limit of Hg2+ in 

drinking water. Because of the strong affinity of S2- toward Hg2+, selective detection of 

Hg2+ was achieved against other metal ions. The reason for the superior sensing 

performance can be attributed to the excellent electronic conductivity, large surface area, 

and microflower structure of 1T-WS2 with strong interactions between the S2- groups of 

WS2 and Hg2+. The high recovery between 96% to 99.6% also demonstrated that the sensor 

can be used for determining Hg2+ in tap water with high accuracy and reliability. All the 
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results suggest that the 1T-WS2 modified GCE has the potential to be an efficient approach 

for on-field detection of Hg2+ in real samples.  

5.3 Future Work 

The developed sensor work could be extended to make it field deployable. These 

sensors could be fabricated on screen printed electrodes to make it portable for on-field 

analysis of heavy metals. Simultaneous and rapid detection of multiple heavy metals 

including Hg2+, Pb2+, Cd2+, and As+ with high sensitivity is still challenging due to lack of 

effective sensing material and devices. To address these problems, different nanomaterials 

including L-cysteine can be immobilized on GO surface for simultaneous detection of 

Hg2+, Pb2+, Cd2+, As+ with a single sensor. To enhance the sensitivity and selectivity, 

specific enzyme or biomolecules can be incorporated into GO composites. For rapid 

detection, electrochemical FET-based sensors can be developed using microfabrication. 

The FET-based sensor devices would provide simultaneous detection of multiple heavy 

metals within a few seconds. 
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